5 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค๋งŒโ€ฆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๋Œ€์ƒ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฑธ ๋‚˜์ค‘์— ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฑฐ ๋‹ค์‹œ ๋ณต์Šต ์ข€ ํ•ด๋ด…์‹œ๋‹ค! ๐Ÿƒ ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

๋“ค์–ด๊ฐ€๋ฉฐ

๊ฒฝ๊ณ ํ•˜๋Š”๋ฐ ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ ์ง„์งœ ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ๋‚ด์šฉ์ž…๋‹ˆ๋‹คโ€ฆ;; ์ง€๊ธˆ๊นŒ์ง€๋Š” ๋ฏธ๋ถ„๋ฐฉ์ •์‹์˜ ์‹ฌํ™” ๋ฒ„์ „์„ ํ•˜๋Š” ๋Š๋‚Œ์ด์—ˆ๋‹ค๋ฉด, ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ ์ง„์งœ MATH4xx ๊ณผ๋ชฉ์˜ ์œ„์—„์ด ๋ญ”์ง€ ์ž‘์‚ด๋‚˜๊ฒŒ ๋Š๋‚„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ใ…‹ใ…‹

์ด ์ฑ•ํ„ฐ์˜ ๋ชฉํ‘œ๋Š” ODE์˜ solution์ด ์กด์žฌ(Existence)ํ•˜๊ณ  ๊ทธ๋ฆฌ๊ณ  ์œ ์ผ(Uniqueness)ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ์ €๋Š” ๊ฐ์ž(๐Ÿฅ”)๋‹ˆ๊นŒ ๊ทธ ์ฃผ๋ณ€ ๊ณ๋‹ค๋ฆฌ๋ถ€ํ„ฐ ๋‹ค๊ฐ€๊ฐ€๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

[Existence and Uniqueness์˜ ๊ณ๋‹ค๋ฆฌ๋“ค]

์ˆœ์„œ๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค.

Function Spaces

IVT์— ๋Œ€ํ•œ ์ •๋ฆฌ๋ฅผ ๋ณด๊ธฐ ์ „์—, ๋จผ์ € ์•„๋ž˜์˜ ์ง‘ํ•ฉ์„ ์—„๋ฐ€ํžˆ ์ •์˜ํ•ด๋ด…์‹œ๋‹ค.

$C^0$๋Š” ๋ชจ๋“  ์—ฐ์† ํ•จ์ˆ˜์˜ ์ง‘ํ•ฉ์ž…๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  $C^1$์€ โ€œํ•œ ๋ฒˆ Continuously Differentiable Functions์˜ ์ง‘ํ•ฉโ€์ž…๋‹ˆ๋‹ค.

์ด๋•Œ, โ€œDifferentiableโ€๊ณผ โ€œContinuously Differentiableโ€์˜ ์ฐจ์ด๋Š” โ€œDifferentialโ€์€ ๋„ํ•จ์ˆ˜ $fโ€™(x)$๊ฐ€ ์—ฐ์†์ผ ํ•„์š”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค. $f(x) = | x |$ ํ•จ์ˆ˜๋Š” $x = 0$์—์„œ ๋„ํ•จ์ˆ˜๊ฐ€ ์—ฐ์†์ด์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋ฐ˜๋ฉด์— โ€œContinuously Differentiableโ€œ์ธ ๊ฒฝ์šฐ๋Š” ๋„ํ•จ์ˆ˜ $fโ€™(x)$๋„ ์—ฐ์†์„ ๋งŒ์กฑํ•ฉ๋‹ˆ๋‹ค.

์ด๊ฒƒ์„ ๊ท€๋‚ฉ์ ์œผ๋กœ ์ •์˜ํ•˜๋ฉด, $C^2$๋Š” โ€œ๋‘ ๋ฒˆ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ณ , $f^{\prime\prime}(x)$๊ฐ€ ์—ฐ์†์ธ ํ•จ์ˆ˜โ€๋ผ๊ณ  ์ •์˜ํ•  ์ˆ˜ ์žˆ๊ณ , $C^{\infty}$๋Š” ๋ฌดํ•œํžˆ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ณ , ๋ชจ๋“  ๋„ํ•จ์ˆ˜๋Š” ์—ฌ์ „ํžˆ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ํ•จ์ˆ˜โ€์ž…๋‹ˆ๋‹ค. ์ฆ‰, ๋งค์šฐ ๋ถ€๋“œ๋Ÿฌ์šด ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค.

Compactness

(ํ•™๋ถ€ ์œ„์ƒ์ˆ˜ํ•™์ด๋‚˜ ํ•ด์„ํ•™์—์„œ ๋‚˜์˜ค๋Š” ๊ฐœ๋…์ด๋ผ๊ณ  ํ•˜๋Š”๋ฐ, ๋‘˜๋‹ค ์ˆ˜๊ฐ•ํ•œ ์ ์ด ์—†์–ด์„œ ์ด๋ฒˆ์— ์ฒจ ๋ดค์Šต๋‹ˆ๋‹ค;;)

์ˆ˜ํ•™์—์„œ โ€œ์œ ๊ณ„(bounded)โ€œ์˜ ๊ฐœ๋…์„ ์ผ๋ฐ˜ํ™”ํ•œ ๊ฒƒ์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, 2์ฐจ์› ํ‰๋ฉด ์œ„์˜ ์›์ด๋‚˜, 3์ฐจ์›์˜ ๊ตฌ, ํ† ๋Ÿฌ์Šค๋Š” ์ฝคํŒฉํŠธ ์ง‘ํ•ฉ์ด๋‹ค. ์ด๋“ค์€ ์ง์„ ์ด๋‚˜, ํ‰๋ฉด, ๊ณต๊ฐ„์— ๋น„ํ•ด ์•„์ฃผ ์ž‘์€ ์ง‘ํ•ฉ๋“ค์ด๋‹ค. โ€˜์ฝคํŒฉํŠธ(compact)โ€™๋ผ๋Š” ์ด๋ฆ„์€ ์ด๋Ÿฐ ๋งฅ๋ฝ์—์„œ ์˜จ ๊ฒƒ์ด๋‹ค.

1์ฐจ์›์—์„œ ๊ฐ€์žฅ ์‰ฝ๊ฒŒ ๋– ์˜ฌ๋ฆด ์ˆ˜ ์žˆ๋Š” ์ฝคํŒฉํŠธ ์ง‘ํ•ฉ์€ $[a, b] \subset \mathbb{R}$์ด๋‹ค. ์–‘ ๋์ด ๋ชจ๋‘ ๋‹ซํžŒ ๊ตฌ๊ฐ„์ž„์— ์œ ์˜ํ•˜์ž. ์œ ํด๋ฆฌ๋“œ ๊ณต๊ฐ„ ์œ„์—์„œ ์ฝคํŒฉํŠธ ์ง‘ํ•ฉ์€ ๋‹ซํž˜์„ฑ(closed)๊ณผ ์œ ๊ณ„์„ฑ(bounded)๋งŒ ๋งŒ์กฑํ•˜๋ฉด ๋œ๋‹ค.

IF $\Omega$ is compact and $F: \Omega \rightarrow \mathbb{R}^n$ is continuous,

THEN $f$ is has its maximum/minimum on $\Omega$.

์œ„์˜ ์ •๋ฆฌ์˜ ์‚ฌ๋ก€๋ฅผ ์‚ดํŽด๋ณด๋ฉด

  • ๊ตฌ๊ฐ„ $[0, 1]$, ํ•จ์ˆ˜ $f(x) = x^2$
    • ์ตœ๋Œ€๊ฐ’ $1$
    • ์ตœ์†Œ๊ฐ’ $0$
  • ๊ตฌ๊ฐ„ $[0, \pi]$, ํ•จ์ˆ˜ $f(x) = \cos x$
    • ์ตœ๋Œ€๊ฐ’ $1$
    • ์ตœ์†Œ๊ฐ’ $-1$

๊ทธ๋Ÿฌ๋‚˜ ๊ตฌ๊ฐ„ $[-1, 1]$ ์œ„์—์„œ ์ •์˜๋œ ํ•จ์ˆ˜ $f(x) = 1/x$๋Š” ์ด ์ •๋ฆฌ๋ฅผ ๋งŒ์กฑํ•˜์ง€ ์•Š๋Š”๋‹ค. ๊ทธ ์ด์œ ๋Š” ์ผ๋‹จ ํ•จ์ˆ˜๊ฐ€ $x = 0$์—์„œ ์ •์˜๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ํ•จ์ˆ˜์˜ ์ •์˜์—ญ์€ ์—„๋ฐ€ํžˆ ๋งํ•ด $[-1, 1] \setminus \{ 0 \}$์ด๋‹ค. ์ด ์ง‘ํ•ฉ์€ ์—ด๋ฆฐ ์ง‘ํ•ฉ์ด๋ฏ€๋กœ ์ฝคํŒฉํŠธํ•˜์ง€ ์•Š๋‹ค. ๋งŒ์•ฝ ์ •์˜์—ญ์„ ์ฝคํŒฉํŠธํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด $f(x=0) = a \in \mathbf{R}$๋ผ๊ณ  ์„ค์ •ํ•œ๋‹ค๋ฉด, ์ด๊ฒƒ์€ ํ•จ์ˆ˜ $f(x)$๊ฐ€ continuous๋ผ๋Š” ์กฐ๊ฑด์„ ์œ„๋ฐฐํ•˜๊ฒŒ ๋œ๋‹ค. ์ฆ‰, ์ƒ๊ฐ๋ณด๋‹ค โ€œ์ฝคํŒฉํŠธ ์—ฐ์† ํ•จ์ˆ˜โ€œ๋ผ๋Š” ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๊ฒƒ!

The Existence and Uniqueness Theorem

Consider the initial value problem

\[X' = F(X), \quad X(0) = X_0\]

where $X_0 \in \mathbb{R}^n$. Supp. that $F: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is $C^1$.

Then there exists a unique solution of this initial value problem. More precisely, there exists $a > 0$ and a unique solution

\[X: (-a, a) \rightarrow \mathbb{R}^n\]

of this differential equation satisfying the initial condition $X(0) = X_0$.

์ด๋•Œ, $C^1$์€ โ€œContinuously Differentiable Functionโ€์ž…๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  $F(X)$๋Š” ๋ฒกํ„ฐ ํ•„๋“œ๋กœ

\[F(X) = (f_1, (x_1, ..., x_n), ..., f_n(x_1, ..., x_n))\]

์„ ๋งŒ์กฑํ•ฉ๋‹ˆ๋‹ค.

Road to the theorem

์šฐ๋ฆฌ์˜ ๋ชฉํ‘œ๋Š” ์œ„์˜ ์ •๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๊ณ , ์ฆ๋ช…ํ•ด๋ณด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋‚ด์šฉ์ด ์–ด๋ ค์šธ ์ˆ˜๋„ ์žˆ๊ฒ ์ง€๋งŒ, ํฌ๊ธฐํ•˜์ง€ ์•Š๊ณ  ์ „์ง€ํ•ด๋ด…์‹œ๋‹ค! ๐Ÿƒโ€โ™‚๏ธโ€โžก๏ธ ๋‚ด์šฉ์„ ๋‹ค ์ดํ•ดํ•˜์ง€ ๋ชป ํ•ด๋„ ๊ดœ์ฐฎ๋‹ค!! (๋‚˜์—๊ฒŒ ํ•˜๋Š” ๋ง ใ…‹ใ…‹)

Continuous Differential Functions are Locally Lipschitz

Supp. that the function $F: \Omega \rightarrow \mathbb{R}^n$ is $C^1$.

Then $F$ is locally Lipschitz.

* ์ด๋•Œ, ํ•จ์ˆ˜์˜ ์ •์˜์—ญ $\Omega$๋Š” ์ฝคํŒฉํŠธ ์ง‘ํ•ฉ์ด๋‹ค.

Let $x_0 \in \Omega$ and let $B_{\epsilon} := \left\{ x: | x - x_0 | \le \epsilon \right\}$ with small $\epsilon > 0$ s.t. $B_{\epsilon} \subset \Omega$.

$DF_X$์— ๋Œ€ํ•œ ๋‚ด์šฉโ€ฆ. (์š”๊ฑด ์–ธ์ œ ์“ฐ๋Š” ๊ฑฐ์ง•?)

์กด์žฌ์„ฑ ์ •๋ฆฌ๊ฐ€ ์žˆ๊ณ , ์œ ์ผ์„ฑ์— ๋Œ€ํ•œ ์ •๋ฆฌ๊ฐ€ ๋”ฐ๋กœ ์žˆ๋Š” ๊ฑด๊ฐ€?

References

https://youtu.be/Zxr6Wekwxh0?si=k3uo7A_srkM8Us7R

https://people.math.wisc.edu/~aseeger/319/notes2.pdf ^์ฝ์–ด๋ด์•ผ ํ•จ