2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

6 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

ํ‚ค์›Œ๋“œ

  • equivalent relation์— ์˜ํ•œ ๋ถ„ํ• 
  • coset $aH$
  • index $[G:H]$
  • (Lagrange Thm) $\lvert H \rvert \mid \lvert G \rvert$

Lagrange Theorem

If $H$ is a subgrop of a group $G$, then $\lvert H \rvert \mid \lvert G \rvert$, in other words, $\lvert G \rvert = [G:H] \lvert H \rvert$.

equivalent relation๊ณผ coset

์šฐ๋ฆฌ๋Š” ์ง‘ํ•ฉ ์œ„์— ์ •์˜๋œ equivalent relation $\sim$๊ฐ€ ์ง‘ํ•ฉ์„ ๋ถ„ํ• ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์•Œ๊ณ  ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  $\sim$์— ์˜ํ•ด ์ง‘ํ•ฉ์„ ๋ถ„ํ• ํ•˜๋Š” ๋ถ€๋ถ„์ง‘ํ•ฉ์„ equivalent class๋ผ๊ณ  ํ•œ๋‹ค.

equivalent relation $\sim_{L}$์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜ํ•˜์ž.

\[a \sim_{L} b \iff a^{-1}b \in H\]

๊ทธ๋Ÿฌ๋ฉด, $a \in G$์— ๋Œ€ํ•ด $\sim_{L}$์— ์˜ํ•ด $a$์™€ relate ๋˜๋Š” ๊ฒƒ๋“ค์˜ ์ง‘ํ•ฉ์ธ equivalent class $\bar{a}$๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

$$\bar{a} = \{x \mid a \sim_{L} x\} = \{x \mid a^{-1}x \in H\} = \{x \mid a^{-1}x = h \in H\}$$

์ด๋•Œ $a^{-1}x = h \in H$์—์„œ ์–‘๋ณ€์— $a$๋ฅผ ๊ณฑํ•˜๋ฉด, $x = ah \in aH$๊ฐ€ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ

$$\bar{a} = \{x \mid x = ah \in aH\} \subseteq aH$$

$\bar{a} \supseteq aH$๋Š” $x = ah \in aH$๋กœ ์žก์œผ๋ฉด ์†์‰ฝ๊ฒŒ ๋ณด์ผ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์ƒ๋žตํ•˜๊ฒ ๋‹ค.

๋”ฐ๋ผ์„œ $\bar{a} = aH$์ด๋ฉฐ, ์ด๊ฒƒ์„ (left) coset์ด๋ผ๊ณ  ํ•œ๋‹ค.

coset $aH$์˜ ํ˜•ํƒœ๋งŒ ์ต์ˆ™ํ•˜๋‹ค๋ฉด, $aH$๊ฐ€ ๋‹จ์ˆœํžˆ $H$์— $a \in G$๋ฅผ ๊ณฑํ•œ ์ง‘ํ•ฉ์ด๋ผ๋Š” ๋Š๋‚Œ์„ ๋ฐ›๊ฒŒ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ $aH$๋Š” ์ง‘ํ•ฉ๊ณผ ์›์†Œ ์‚ฌ์ด์˜ ๊ณฑ์˜ ์˜๋ฏธ๋ณด๋‹ค๋Š” equivalent class์ž„์„ ๊ผญ ๊ธฐ์–ตํ•ด์•ผ ํ•œ๋‹ค.

equivalent class์— ์˜ํ•œ partition

์•ž์—์„œ ๋งํ–ˆ๋“ฏ equivalent relation์€ equivalent class๋กœ ์ง‘ํ•ฉ์„ ๋ถ„ํ• ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ relation $\sim_{L}$์˜ equivalent class $aH$๋Š” ์ง‘ํ•ฉ $G$์˜ ๋ถ„ํ• ์˜ ์ผ๋ถ€๋ถ„์ด๋‹ค.

์šฐ๋ฆฌ๋Š” ๋ชจ๋“  $aH$์— ๋Œ€ํ•ด์„œ $\lvert H \rvert = \lvert aH \rvert$์ž„์„ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค.

ํ•จ์ˆ˜ $\phi : H \rightarrow aH$๋ฅผ $\phi(h) = ah$๋กœ ์ •์˜ํ•˜๋ฉด $\phi$๋Š” 1-1 & onto์ด๋‹ค.

i) [1-1]
$\phi(h_1) = \phi(h_2) \implies ah_1 = ah_2 \implies h_1 = h_2$

ii) [onto]
For $x = ah \in aH$, there exist an inverse image $h \in H$ s.t. $\phi(h)=ah$.

1-1 & onto์ธ $\phi : H \rightarrow aH$๊ฐ€ ์กด์žฌํ•˜๋ฏ€๋กœ $\lvert H \rvert = \lvert aH \rvert$์ด๋ฉฐ, $H$์˜ ๋ชจ๋“  coset์€ $H$์™€ ๋™์ผํ•œ cardinality๋ฅผ ๊ฐ–๋Š”๋‹ค.1

๊ตฐ $G$๋ฅผ coset์˜ ๋ถ„ํ• ๋กœ ๋‹ค์‹œ ์“ฐ๋ฉด

$$G = H {\cup\mkern-11.5mu\cdot\mkern5mu} {a_1}H {\cup\mkern-11.5mu\cdot\mkern5mu} {a_2}H {\cup\mkern-11.5mu\cdot\mkern5mu} \cdots$$

์šฐ๋ฆฌ๋Š” $G$๊ฐ€ ์œ ํ•œ๊ตฐ์ธ ๊ฒฝ์šฐ๋ฅผ ์‚ดํŽด๋ณผ ๊ฒƒ์ด๋ฏ€๋กœ ๊ฐ€๋Šฅํ•œ coset $aH$์˜ ์ˆ˜๋Š” ์—ญ์‹œ ์œ ํ•œํ•˜๋‹ค. ์ด๋•Œ equivalent class์ธ ๋‘ coset $aH$์™€ $bH$์— ๋Œ€ํ•ด $a \sim_{L} b$ ์ฆ‰, $a^{-1}b \in H$๋ผ๋ฉด $aH = bH$์ž„์„ ์ด์šฉํ•˜์—ฌ ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  coset์˜ ์กฐํ•ฉ์—์„œ ์ค‘๋ณต์„ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ค‘๋ณต์„ ์ œ๊ฑฐํ•œ distinct coset์˜ ๊ฐฏ์ˆ˜๋ฅผ $m$์ด๋ผ๊ณ  ํ•˜์ž.

์ด์ œ ์ฆ๋ช…์„ ๊ฒฐ๋ก ์„ ๋‚ด๋ ค๋ณด์ž. ์œ ํ•œ๊ตฐ $G$๋Š” $m$๊ฐœ์˜ distinct coset $aH$๋“ค๋กœ ๋ถ„ํ• ๋œ๋‹ค. ๋”ฐ๋ผ์„œ $G$์˜ cardinality๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. $a_1 = e$๋ผ๊ณ  ํ•˜์ž.

$$G = {a_1}H {\cup\mkern-11.5mu\cdot\mkern5mu} {a_2}H {\cup\mkern-11.5mu\cdot\mkern5mu} \cdots {\cup\mkern-11.5mu\cdot\mkern5mu} {a_m}H$$ $$|G| = |{a_1}H| + |{a_2}H| + \cdots + |{a_m}H| = m |H|$$

๋”ฐ๋ผ์„œ $\lvert H \rvert \mid \lvert G \rvert$๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค! $\blacksquare$

Index of subgroup

์•ž์—์„œ ์ •์˜ํ•œ # of distinc coset์ธ $m$์„ $[G:H]$๋กœ ์ •์˜ํ•˜์ž. ๊ทธ๋Ÿฌ๋ฉด, $\lvert G \rvert = m \lvert H \rvert = [G:H] \lvert H \rvert$๊ฐ€ ๋œ๋‹ค.

$[G:H]$๋ฅผ index of subgroup $H$๋ผ๊ณ  ํ•˜๋ฉฐ, Lagrange theorem์˜ ๊ฒฐ๊ณผ์ธ $\lvert G \rvert = [G:H] \lvert H \rvert$๋กœ ์ •์˜ํ•œ๋‹ค. $\blacksquare$

๋˜๋Š” $H \leq G$์„ ํ†ตํ•ด $[G:H] = \cfrac{\lvert G \rvert}{\lvert H \rvert}$๋กœ ๊ฐ„๋‹จํ•˜๊ฒŒ ์“ธ ์ˆ˜ ์žˆ๋‹ค.


๋งบ์Œ๋ง

Lagrange Theorem์€ ์ดˆ๊ธ‰ ๊ตฐ๋ก ์—์„œ ํ•ต์‹ฌ์ธ ์ •๋ฆฌ์ด๋‹ค. ๊ทธ๋งŒํผ ์ž์ฃผ ๋“ฑ์žฅํ•˜๊ณ , ์ดํ›„์˜ ๋‚ด์šฉ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ •๋ฆฌ๋ฅผ ๋ฐ”๋กœ ์ฆ๋ช…ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ˆ™๋‹ฌํ•˜๋Š” ๊ฒƒ์ด ์ข‹๋‹ค.

Lagrange Theorem ์ฆ๋ช…์—์„œ ํ•ต์‹ฌ์ด ๋˜๋Š” ์•„์ด๋””์–ด๋Š” โ€œequivalent class๋กœ ๊ตฐ $G$๋ฅผ ๋ถ„ํ• ํ•˜๋Š” ๊ฒƒโ€์ด๋‹ค. Lagrange Theorem์„ ์ฆ๋ช…ํ•˜๋Š” ๊ณผ์ •์—์„œ coset์ด๋ผ๋Š” ๊ฐœ๋…์ด ์ƒˆ๋กญ๊ฒŒ ๋“ฑ์žฅํ•˜์ง€๋งŒ relation $\sim_{L}$์˜ equivalent class์— โ€˜cosetโ€™์ด๋ผ๋Š” ์ด๋ฆ„์ด ๋ถ™์—ˆ์„ ๋ฟ ๋ณธ์งˆ์€ equivalent class๋‹ค.

Lagrange Theorem ์ฆ๋ช…์˜ ํ๋ฆ„์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

  • equivalent relation $\sim_{L}$ ์ •์˜
  • equivalent class $aH$ ์ •์˜
  • equivalent relation์˜ ํŠน์ง•์ธ ์ง‘ํ•ฉ์˜ ๋ถ„ํ•  ์ด์šฉ
  • ๊ทธ ๊ณผ์ •์—์„œ $\lvert H \rvert = \lvert aH \rvert$์ž„์„ ์ฆ๋ช…
  • number of distinct coset์„ ์ •์˜ํ•˜๋Š”๋ฐ์— ํ•„์š”ํ•œ $aH = bH$์˜ ์กฐ๊ฑด ์ œ์‹œ
  • ๊ตฐ $G$๋ฅผ distinct coset์˜ union์œผ๋กœ ํ‘œํ˜„
  • ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ $\lvert G \rvert$๋ฅผ $m\lvert H \rvert$๋กœ ํ‘œํ˜„
  • ๊ฒฐ๋ก ์ธ $\lvert H \rvert \mid \lvert G \rvert$ ์ œ์‹œ

์ฐธ๊ณ ์ž๋ฃŒ


  1. ์ผ๋ฐ˜์ ์œผ๋กœ equivalent relation์— ์˜ํ•œ ๋ถ„ํ• ์ด ๋™์ผํ•œ ํฌ๊ธฐ์˜ equivalent class๋กœ ๋ถ„ํ• ๋จ์„ ๋ณด์žฅํ•˜์ง€๋Š” ์•Š๋Š”๋‹ค. ๋‹จ์ง€ equivalent class๋“ค์ด pairwise disjointํ•˜๊ณ , ๊ทธ๋“ค์˜ union์ด ์›๋ž˜ ์ง‘ํ•ฉ์ด ๋จ์„ ๋งํ•  ๋ฟ์ด๋‹ค. $G = P_1 {\cup\mkern-11.5mu\cdot\mkern5mu} P_2 \cdots P_n$ย