2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

3 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


(Review) Lagrange Thm

For a group $G$, and subgroup $H \le G$, $\lvert H \rvert \mid \lvert G \rvert$

Lagrange ์ •๋ฆฌ๋Š” Group $G$์™€ subgroup $H$ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๊ธฐ์ˆ ํ•œ ์ •๋ฆฌ์ด๋‹ค.

ํ•˜์ง€๋งŒ, ์ผ๋ฐ˜์ ์œผ๋กœ Lagrange ์ •๋ฆฌ์˜ ์—ญ์€ ์„ฑ๋ฆฝํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„  Lagrange ์ •๋ฆฌ์˜ ์—ญ์— ๋Œ€ํ•œ ๋ฐ˜๋ก€์ธ $A_4$์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค.


Converse of Lagrange Thm

Lagrange ์ •๋ฆฌ์˜ ์—ญ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

Group $G$์— ๋Œ€ํ•ด, $\lvert G \rvert$์˜ ์•ฝ์ˆ˜๋ฅผ order๋กœ ๊ฐ–๋Š” subgroup์ด ํ•ญ์ƒ ์กด์žฌํ•œ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ Lagrange ์ •๋ฆฌ์˜ ์—ญ์€ ๊ฑฐ์ง“์ด๋‹ค! ๊ทธ ๋ฐ˜๋ก€๋ฅผ ์‚ดํŽด๋ณด์ž.


$A_4$ has no subgroup of order 6

$A_4$์˜ order๋Š” $\frac{24}{2}=12$์ด๋‹ค. ํ•˜์ง€๋งŒ, $A_4$๋Š” order 6์ธ subgroup์„ ๊ฐ€์ง€์ง€ ์•Š๋Š”๋‹ค!


(pf) proof by contradiction

Supp. $A_4$ has a subgroup $H$ of order 6.

We will draw a contradiction.

subgroup $H$์˜ index๋ฅผ ์‚ดํŽด๋ณด์ž.

\[\left[ A_4 : H \right]= \left\lvert \frac{A_4}{H} \right\rvert = \frac{12}{6} = 2\]

์ฆ‰, $H$์˜ index๊ฐ€ 2์ด๋ฏ€๋กœ $H$๋Š” $A_4$์˜ Normal subgroup์ด๋‹ค1; $H \triangleleft A_4$


THEN, $A_4 = H {\cup\mkern-13mu\cdot\mkern5mu} \sigma H$์ด๊ณ , $\dfrac{A_4}{H} = \{e, a \} = \{ H, \sigma H\}$ for all $\sigma \ne H$

์ด๋•Œ, factor group $\frac{A_4}{H}$์˜ order๊ฐ€ 2์ด๋ฏ€๋กœ $a^2=e$๊ฐ€ ๋˜์–ด์•ผ ํ•œ๋‹ค.

๊ทธ๋Ÿฌ๋ฉด, $(\sigma H)^2=\sigma^2 H = H$์ด๋ฏ€๋กœ $\sigma^2 \in H$๊ฐ€ ๋œ๋‹ค. (by ์—ฐ์‚ฐ์˜ ๋‹ซํž˜์„ฑ)

์ฆ‰, $\forall \sigma \notin H$, $\sigma^2 \in H$๊ฐ€ ๋œ๋‹ค.

์ด๋•Œ, $\forall \sigma \in H$์— ๋Œ€ํ•ด์„œ๋„ $\sigma^2 \in H$๊ฐ€ ๋˜๋ฏ€๋กœ, ์ข…ํ•ฉํ•˜๋ฉด

\[\forall \sigma \in A_4, \: \sigma^2 \in H\]


$\sigma \in A_4$์ธ $\sigma$๋Š” ์„ธ ๊ฐ€์ง€ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง„๋‹ค.

  1. $\sigma=(1) \implies \sigma^2 = (1) \in H$
  2. $\sigma = (i \; j)(x \; y) \implies \sigma^2 = (1) \in H$
  3. $\sigma = (i \; j \; k) \implies \sigma^2 = (i \; k \; j) \in H$

2

๋”ฐ๋ผ์„œ ๋ชจ๋“  3-cycle์ด $H$์— ์†ํ•˜๊ฒŒ ๋œ๋‹ค. (+ identity์ธ $(1)$๋„ ํฌํ•จ)

# of 3-cycle = $\binom{4}{3} \times 2 = 8$3

์—ฌ๊ธฐ์— identity์ธ $(1)$๊นŒ์ง€ ํฌํ•จํ•˜๋ฉด, $\lvert H \rvert = 8+1 = 9$

์ด๊ฒƒ์€ $\lvert H \rvert = 6$์ด๋ผ๋Š” ๊ฐ€์ •์— ๋ชจ์ˆœ๋œ๋‹ค!

๋”ฐ๋ผ์„œ $A_4$์—์„œ $\lvert H \rvert = 6$์ธ subgroup์€ ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค.


  1. โ€œsubgroup์˜ index๊ฐ€ 2์ด๋ฉด, Normal subgroup์ด๋‹ค.โ€๋ผ๋Š” ์ •๋ฆฌ๋ฅผ ํ™œ์šฉํ•œ ๋ถ€๋ถ„์ด๋‹ค.ย 

  2. $A_4$์—๋Š” even permutation๋งŒ ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— odd permutation์ธ $(w \; x \; y \; z)$๋Š” ๊ณ ๋ คํ•˜์ง€ ์•Š๋Š”๋‹ค.ย 

  3. ์ง‘ํ•ฉ $\{i, j, k\}$์—์„œ $(i \; j \; k)$์™€ $(i \; k \; j)$๊ฐ€ ๊ฐ€๋Šฅํ•˜๋ฏ€๋กœ $\binom{4}{3}$์—์„œ $\times 2$๋ฅผ ํ•ด์ค€๋‹ค.ย