2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

6 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


Residue๋ฅผ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•ด์„  ๋จผ์ € Singular point์— ๋Œ€ํ•ด ์•Œ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.

Singular point

Definition. singular point
$z_0$ is called a singular point IF $f(z)$ is not analytic at $z_0$.

Definition. isolated singular point
IF there is $r>0$ such that $f(z)$ is analytic on $0<\lvert z-z_0 \rvert < r$, THEN a singular point $z_0$ is said to be isolated.

์ฆ‰, ํ•œ ์ ์—์„œ๋งŒ singularํ•˜๊ณ  ๊ทผ๋ฐฉ์—์„  analytic ํ•˜๋‹ค๋ฉด, isolated singular point๋ผ๊ณ  ํ•œ๋‹ค.


Example.
\(f(z)=\frac{z-1}{z^5(z+9)}\)

Sol.
๋ถ„์ž, ๋ถ„๋ชจ๊ฐ€ polynomial์ด๋ฏ€๋กœ ๋ถ„๋ชจ๊ฐ€ 0์ธ ์ง€์ ์—์„œ singular point! ๋”ฐ๋ผ์„œ singular point is $z=0$ & $z=-9$


์ผ๋ฐ˜์ ์œผ๋กœ Domain $D$์—์„œ singular point๊ฐ€ ์œ ํ•œ๊ฐœ๋ผ๋ฉด, ๋ชจ๋‘ isoloated ์ด๋‹ค.

Property.
IF $f(z)=\frac{P(z)}{Q(z)}$, $P$, $Q$: polynomials, THEN all singular points are isolated.

proof.
Polynomial์€ ํ•ด๊ฐ€ ์œ ํ•œํ•˜๊ธฐ ๋•Œ๋ฌธ $\blacksquare$


Example. Not isolated singular points
\(f(z)= \textrm{Log} \, z = \log r + i\theta \quad (r>0, \; -\pi<\theta<\pi)\)

Sol.

branch cut์ด ๋ชจ๋‘ singular point์— ํ•ด๋‹นํ•œ๋‹ค. ์ด๋•Œ, branch cut์€ $x<0$์ธ ๋ชจ๋“  ์‹ค์ˆ˜์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ ๊ฐฏ์ˆ˜๊ฐ€ ๋ฌดํ•œํ•˜๊ณ , not isolated singular points์ด๋‹ค.


Example. Infinitely many isolated singular points
\(f(z)=1/\sin(\pi/z)\)

Sol. $\sin(\pi/z)=0$์ด ๋˜๋Š” ์ง€์ ์„ ์ƒ๊ฐํ•ด๋ณด๋ฉด,

\[\begin{aligned} \pi/z &= \pm n\pi \\ 1/z &= \pm \pi \\ z &= 1/{\pm n} \end{aligned}\]

์ด๋•Œ $z$๊ฐ€ ์›์ ์— ๊ทผ์ ‘ํ•ด ๊ฐ€์ง€๋งŒ, ์–ด๋–ค singular point๋ฅผ ์žก๋”๋ผ๋„ ์ ๋‹นํ•œ $r$์„ ์žก์•„ analytic region์„ ์žก์„ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๋ชจ๋‘ isolated singular point์ด๋‹ค.

๋‹จ, $z=0$์€ not isolated singular point์ด๋‹ค!


(review) Laurent series

Supp. that a function $f$ is analytic on an annular region $0<\lvert z-z_0\rvert < R$, THEN $f(z)$ can be represented as the Laurent series.

\[f(z)=\sum^{\infty}_{n=0}{a_n(z-z_0)^n} + \sum^{\infty}_{n-1}{\frac{b_n}{(z-z_0)^n}}\]

Coefficients of the Laurent series

\[a_n=\frac{1}{2{\pi}i} \oint_{C} {\frac{f(w)}{(w-z_0)^{n+1}} dw} \quad \textrm{and} \quad b_n=\frac{1}{2{\pi}i} \oint_{C} {f(w)(w-z_0)^n-1 dw}\]

where $C$ is any simple closed contour around $z_0$ with CCW orientation that lies in $0<\lvert z-z_0\rvert < R$


์ด๋•Œ, ์ฃผ๋ชฉํ•  ์ ์€ ๋กœ๋ž‘ ๊ธ‰์ˆ˜์˜ ๊ณ„์ˆ˜ $b_1$์ด๋‹ค!

\[b_1 = \frac{1}{2{\pi}i} \oint_{C} {f(w) dw}\]

์ฆ‰, ํ•จ์ˆ˜ $f(z)$์˜ ์ ๋ถ„๊ฐ’์„ ๊ตฌํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด, ๋กœ๋ž‘ ๊ธ‰์ˆ˜์˜ ๊ณ„์ˆ˜ $b_1$์„ ํ™•์ธํ•˜๋ฉด ๋œ๋‹ค๋Š” ์˜๋ฏธ๊ฐ€ ๋œ๋‹ค!!

Residue

์ด์ œ Residue๋ฅผ ์ •์˜ํ•ด๋ณด์ž.


Definition. residue
$b_1$ is called the residue of $f(z)$ at the isolated singular point $z_0$.

\[b_1 = \underset{z=z_0}{\textrm{Res}} f(z)\]

์ฆ‰, residue๋Š” ๋กœ๋ž‘ ๊ธ‰์ˆ˜์˜ ๊ณ„์ˆ˜ $b_1$์ด๋ผ๋Š” ๊ฒƒ์ด๋‹ค!


Note.

\[\begin{aligned} b_1 &= \frac{1}{2{\pi}i} \oint_{C} {f(w) dw} \\ \oint_{C} {f(w) dw} &= 2{\pi}i \times b_1 \\ \end{aligned}\]

์ฆ‰, Residue๋กœ ์ ๋ถ„๊ฐ’์„ ๊ตฌํ•  ์ˆ˜ ์žˆ๊ณ , ์ ๋ถ„๊ฐ’์œผ๋กœ Reside๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค!


Cauchyโ€™s residue Theorem

\[\oint_{C} {f(z) dz}\]

์œ„์˜ Contour ์ ๋ถ„์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค.

1. IF $f(z)$ is analytic on $C$ and inside of $C$,

\[\oint_{C} {f(z) dz} = 0\]

1

2. IF $f(z)$ has one singular point $z_0$ inside $C$ and it is analytic on $C$ and inside of $C$

\[\oint_{C} {f(z) dz} = 2{\pi}i \left(\underset{z=z_0}{\textrm{Res}} f(z) \right)\]


Example. two singular point case
๋งŒ์•ฝ $C$ ๋‚ด๋ถ€์— ๋‘ ๊ฐœ์˜ singular points, ๋˜๋Š” ๊ทธ๋ณด๋‹ค ๋งŽ์€ singular points๊ฐ€ ์žˆ๋‹ค๋ฉด ์–ด๋–ป๊ฒŒ ๋ ๊นŒ?

Sol.
Divide integral into two smaller contour integrals!

\[\begin{aligned} \oint_{C} {f(z) dz} &= \oint_{C_1} {f(z) dz} + \oint_{C_2} {f(z) dz} \\ &= 2{\pi}i{\left( \underset{z=z_1}{\textrm{Res}} f(z) + \underset{z=z_2}{\textrm{Res}} f(z) \right)} \end{aligned}\]

$n$๊ฐœ์˜ singular point๊ฐ€ ์žˆ์„ ๋•Œ์—๋„ ํ•˜๋‚˜์˜ singular point๋ฅผ ํฌํ•จํ•˜๋Š” contour ์ ๋ถ„์œผ๋กœ ๋ถ„๋ฆฌํ•ด ๊ณ„์‚ฐํ•˜๋ฉด ๋œ๋‹ค.


Theorem. Caucyโ€™s residue theorem
Let $C$ be a simple closed contour with CCW orientation. IF $f(z)$ is analytic inside of $C$ and on $C$ except for a finite number of singular points $z_k$ $(k=1, 2, \dots, n)$ inside $C$, THEN

\[\oint_{C} {f(z) dz} = 2{\pi}i \left( \sum^{n}_{k=1} {\underset{z=z_k}{\textrm{Res}} f(z)} \right)\]

Example.

\[\oint_{C} {\frac{e^{z}-1}{z^3} dz}\]

where $C$ is the circle $\lvert z \rvert = 1$ with the positive orientation.

Sol.
Set $f(z)=\frac{e^{z}-1}{z^3}$, THEN singular point is $z=0$.

Express $f(z)$ as the Laurent series with cetner $z=0$!

\[\begin{aligned} \frac{e^{z}-1}{z^3} &= \frac{1}{z^3} \left( \left( 1+z+\frac{z^2}{2!}+\cdots \right) -1 \right)\\ &= \frac{1}{z^3} \left( z+\frac{z^2}{2!}+\cdots \right) \\ &= \frac{1}{z^2} + \frac{1}{2!}\frac{1}{z} + \frac{1}{3!} + \frac{1}{4!}z + \cdots \end{aligned}\]

THEN, $b_1=\frac{1}{2!}$.

Therefore, by residue thm,

\[\begin{aligned} \oint_{C} {\frac{e^{z}-1}{z^3} dz} &= 2{\pi}i \times b_1 \\ &= 2{\pi}i \times \frac{1}{2!} = {\pi}i \end{aligned}\]

$\blacksquare$


Example.

\[\oint_C {\frac{4z-5}{z(z-1)} dz}\]

where $C$ is the circle $\lvert z \rvert = 2$ with the positive orientation.

Sol.
์ƒ-๋žต


๋งบ์Œ๋ง

Residue Thm์„ ์ž˜ ํ™œ์šฉํ•˜๋ฉด, ์‹ค์ˆ˜ ์˜์—ญ์—์„œ ํ’€๋ฉด ๋ณต์žกํ–ˆ๋˜ ์ ๋ถ„๋“ค์„ ๋ณต์†Œ์ˆ˜ ์˜์—ญ์—์„œ ์‰ฝ๊ฒŒ ํ’€ ์ˆ˜ ์žˆ๋‹ค!!

๊ฐ€์šฐ์Šค ์ ๋ถ„์ด ์ข‹์€ ์˜ˆ์ด๋‹ค.

\[\int^{\infty}_{-\infty} {e^{-z^2} dz}\]
  1. Talyer ์ •๋ฆฌ์— ์˜ํ•˜๋ฉด, analytic ํ•จ์ˆ˜๋Š” ์–‘์˜ ์ฐจ์ˆ˜๋ฅผ ๊ฐ€์ง„ ๋‹คํ•ญ์‹์œผ๋กœ ์ „๊ฐœํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ $b_1=0$์ด๋‹ค. ๊ทธ๋ž˜์„œ residue thm์€ singular point ์—ฌ๋ถ€์™€ ์ƒ๊ด€์—†์ด ๊ธฐ์ˆ ํ•  ์ˆ˜๋„ ์žˆ๋‹ค.ย