Residue Theorem
2020-2ํ๊ธฐ, ๋ํ์์ โ์์ฉ๋ณต์ํจ์๋ก โ ์์ ์ ๋ฃ๊ณ ๊ณต๋ถํ ๋ฐ๋ฅผ ์ ๋ฆฌํ ๊ธ์ ๋๋ค. ์ง์ ์ ์ธ์ ๋ ํ์์ ๋๋ค :)
Residue๋ฅผ ์ ์ํ๊ธฐ ์ํด์ ๋จผ์ Singular point์ ๋ํด ์์์ผ ํฉ๋๋ค.
Singular point
Definition. singular point
$z_0$ is called a singular point IF $f(z)$ is not analytic at $z_0$.
Definition. isolated singular point
IF there is $r>0$ such that $f(z)$ is analytic on $0<\lvert z-z_0 \rvert < r$, THEN a singular point $z_0$ is said to be isolated.
์ฆ, ํ ์ ์์๋ง singularํ๊ณ ๊ทผ๋ฐฉ์์ analytic ํ๋ค๋ฉด, isolated singular point๋ผ๊ณ ํ๋ค.
Example.
\(f(z)=\frac{z-1}{z^5(z+9)}\)
Sol.
๋ถ์, ๋ถ๋ชจ๊ฐ polynomial์ด๋ฏ๋ก ๋ถ๋ชจ๊ฐ 0์ธ ์ง์ ์์ singular point! ๋ฐ๋ผ์ singular point is $z=0$ & $z=-9$
์ผ๋ฐ์ ์ผ๋ก Domain $D$์์ singular point๊ฐ ์ ํ๊ฐ๋ผ๋ฉด, ๋ชจ๋ isoloated ์ด๋ค.
Property.
IF $f(z)=\frac{P(z)}{Q(z)}$, $P$, $Q$: polynomials, THEN all singular points are isolated.
proof.
Polynomial์ ํด๊ฐ ์ ํํ๊ธฐ ๋๋ฌธ $\blacksquare$
Example. Not isolated singular points
\(f(z)= \textrm{Log} \, z = \log r + i\theta \quad (r>0, \; -\pi<\theta<\pi)\)
Sol.
branch cut์ด ๋ชจ๋ singular point์ ํด๋นํ๋ค. ์ด๋, branch cut์ $x<0$์ธ ๋ชจ๋ ์ค์์ด๊ธฐ ๋๋ฌธ์ ๊ทธ ๊ฐฏ์๊ฐ ๋ฌดํํ๊ณ , not isolated singular points์ด๋ค.
Example. Infinitely many isolated singular points
\(f(z)=1/\sin(\pi/z)\)
Sol. $\sin(\pi/z)=0$์ด ๋๋ ์ง์ ์ ์๊ฐํด๋ณด๋ฉด,
\[\begin{aligned} \pi/z &= \pm n\pi \\ 1/z &= \pm \pi \\ z &= 1/{\pm n} \end{aligned}\]์ด๋ $z$๊ฐ ์์ ์ ๊ทผ์ ํด ๊ฐ์ง๋ง, ์ด๋ค singular point๋ฅผ ์ก๋๋ผ๋ ์ ๋นํ $r$์ ์ก์ analytic region์ ์ก์ ์ ์์ผ๋ฏ๋ก ๋ชจ๋ isolated singular point์ด๋ค.
๋จ, $z=0$์ not isolated singular point์ด๋ค!
(review) Laurent series
Supp. that a function $f$ is analytic on an annular region $0<\lvert z-z_0\rvert < R$, THEN $f(z)$ can be represented as the Laurent series.
\[f(z)=\sum^{\infty}_{n=0}{a_n(z-z_0)^n} + \sum^{\infty}_{n-1}{\frac{b_n}{(z-z_0)^n}}\]Coefficients of the Laurent series
where $C$ is any simple closed contour around $z_0$ with CCW orientation that lies in $0<\lvert z-z_0\rvert < R$
์ด๋, ์ฃผ๋ชฉํ ์ ์ ๋ก๋ ๊ธ์์ ๊ณ์ $b_1$์ด๋ค!
\[b_1 = \frac{1}{2{\pi}i} \oint_{C} {f(w) dw}\]์ฆ, ํจ์ $f(z)$์ ์ ๋ถ๊ฐ์ ๊ตฌํ๊ณ ์ถ๋ค๋ฉด, ๋ก๋ ๊ธ์์ ๊ณ์ $b_1$์ ํ์ธํ๋ฉด ๋๋ค๋ ์๋ฏธ๊ฐ ๋๋ค!!
Residue
์ด์ Residue๋ฅผ ์ ์ํด๋ณด์.
Definition. residue
$b_1$ is called the residue of $f(z)$ at the isolated singular point $z_0$.
์ฆ, residue๋ ๋ก๋ ๊ธ์์ ๊ณ์ $b_1$์ด๋ผ๋ ๊ฒ์ด๋ค!
Note.
์ฆ, Residue๋ก ์ ๋ถ๊ฐ์ ๊ตฌํ ์ ์๊ณ , ์ ๋ถ๊ฐ์ผ๋ก Reside๋ฅผ ๊ตฌํ ์ ์๋ค!
Cauchyโs residue Theorem
\[\oint_{C} {f(z) dz}\]์์ Contour ์ ๋ถ์ ๋ค์๊ณผ ๊ฐ์ด ๊ณ์ฐํ ์ ์๋ค.
1. IF $f(z)$ is analytic on $C$ and inside of $C$,
\[\oint_{C} {f(z) dz} = 0\]2. IF $f(z)$ has one singular point $z_0$ inside $C$ and it is analytic on $C$ and inside of $C$
\[\oint_{C} {f(z) dz} = 2{\pi}i \left(\underset{z=z_0}{\textrm{Res}} f(z) \right)\]Example. two singular point case
๋ง์ฝ $C$ ๋ด๋ถ์ ๋ ๊ฐ์ singular points, ๋๋ ๊ทธ๋ณด๋ค ๋ง์ singular points๊ฐ ์๋ค๋ฉด ์ด๋ป๊ฒ ๋ ๊น?
Sol.
Divide integral into two smaller contour integrals!
$n$๊ฐ์ singular point๊ฐ ์์ ๋์๋ ํ๋์ singular point๋ฅผ ํฌํจํ๋ contour ์ ๋ถ์ผ๋ก ๋ถ๋ฆฌํด ๊ณ์ฐํ๋ฉด ๋๋ค.
Theorem. Caucyโs residue theorem
Let $C$ be a simple closed contour with CCW orientation. IF $f(z)$ is analytic inside of $C$ and on $C$ except for a finite number of singular points $z_k$ $(k=1, 2, \dots, n)$ inside $C$, THEN
Example.
where $C$ is the circle $\lvert z \rvert = 1$ with the positive orientation.
Sol.
Set $f(z)=\frac{e^{z}-1}{z^3}$, THEN singular point is $z=0$.
Express $f(z)$ as the Laurent series with cetner $z=0$!
\[\begin{aligned} \frac{e^{z}-1}{z^3} &= \frac{1}{z^3} \left( \left( 1+z+\frac{z^2}{2!}+\cdots \right) -1 \right)\\ &= \frac{1}{z^3} \left( z+\frac{z^2}{2!}+\cdots \right) \\ &= \frac{1}{z^2} + \frac{1}{2!}\frac{1}{z} + \frac{1}{3!} + \frac{1}{4!}z + \cdots \end{aligned}\]THEN, $b_1=\frac{1}{2!}$.
Therefore, by residue thm,
\[\begin{aligned} \oint_{C} {\frac{e^{z}-1}{z^3} dz} &= 2{\pi}i \times b_1 \\ &= 2{\pi}i \times \frac{1}{2!} = {\pi}i \end{aligned}\]$\blacksquare$
Example.
where $C$ is the circle $\lvert z \rvert = 2$ with the positive orientation.
Sol.
์-๋ต
๋งบ์๋ง
Residue Thm์ ์ ํ์ฉํ๋ฉด, ์ค์ ์์ญ์์ ํ๋ฉด ๋ณต์กํ๋ ์ ๋ถ๋ค์ ๋ณต์์ ์์ญ์์ ์ฝ๊ฒ ํ ์ ์๋ค!!
๊ฐ์ฐ์ค ์ ๋ถ์ด ์ข์ ์์ด๋ค.
\[\int^{\infty}_{-\infty} {e^{-z^2} dz}\]-
Talyer ์ ๋ฆฌ์ ์ํ๋ฉด, analytic ํจ์๋ ์์ ์ฐจ์๋ฅผ ๊ฐ์ง ๋คํญ์์ผ๋ก ์ ๊ฐํ ์ ์์ผ๋ฏ๋ก $b_1=0$์ด๋ค. ๊ทธ๋์ residue thm์ singular point ์ฌ๋ถ์ ์๊ด์์ด ๊ธฐ์ ํ ์๋ ์๋ค.ย ↩