2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

10 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


Three Types of (isolated) Singular points

Definition. Principal part of Laurent Series

\[\sum^{\infty}_{n=1} {\frac{b_n}{(z-z_0)^n}}\]

(i) removable singular point
all $b_n=0$

(ii) poles of order $m$
$b_1 \ne 0$ and $b_n=0$ for $n \ge m+1$ 1

(iii) essential singular point
$b_n \ne 0$ for infinitely many $n$ 2


μ΄μ€‘μ—μ„œ μ£Όλͺ©ν•  녀석은 pole이닀.

\[\frac{b_1}{(z-z_0)} + \frac{b_2}{(z-z_0)^2} + \cdots \frac{b_m}{(z-z_0)^m}\]

점 $z_0$λ₯Ό pole라고 ν•˜λ©°, $m$을 order of pole이라고 ν•œλ‹€.


removable singular point

Example. removable singular point

\[\frac{\sin{z}}{z}\]

Sol.

\[\begin{aligned} \frac{\sin{z}}{z} &= \frac{1}{z}\left\{ z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots \right\} \\ &= 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \cdots \end{aligned}\]

$f(z)$에 λŒ€ν•œ λ‘œλž‘ κΈ‰μˆ˜λ₯Ό μ‚΄νŽ΄λ³΄λ©΄, $z=0$이 removable singular pointμž„μ„ μ•Œ 수 μžˆλ‹€.

$f(z)$의 λ‘œλž‘ κΈ‰μˆ˜μ— singular point인 $z=0$을 λŒ€μž…ν•˜λ©΄, $f(0)=\frac{\sin(0)}{(0)}=1$이 λœλ‹€.

μ΄λ•Œ, $f(z)$의 κ·Ήν•œμΈ $\underset{z \rightarrow 0}{\lim}{\frac{\sin z}{z}}$ μ—­μ‹œ 그값이 $1$이닀.

이 κ²°κ³Όλ₯Ό μΌλ°˜ν™”ν•œ 정리가 λ°”λ‘œ μ•„λž˜μ˜ 정리이닀.

Theorem.
IF $z_0$ is a removable singular point, THEN $f(z_0)$ is defined & $\underset{z \rightarrow z_0}{\lim} f(z) = f(z_0)$.

그리고 μœ„μ˜ 정리λ₯Ό λ°˜λŒ€ λ°©ν–₯으둜 κΈ°μˆ ν•˜λŠ” 정리도 μ‘΄μž¬ν•œλ‹€.

Theorem.
IF $z_0$ is an isolated singular point of $f(z)$ and $f(z)$ is bounded for some neighborhood of $z_0$, THEN $z_0$ is a removable singular point.

$f(z)$의 κ·Όλ°©μ—μ„œ boundedλ˜μ–΄ μžˆλ‹€λŠ” 말은 곧 $\underset{z \rightarrow z_0}{\lim} f(z)$κ°€ μ‘΄μž¬ν•¨μ„ μ˜λ―Έν•œλ‹€. 그리고 이λ₯Ό 톡해 $z_0$의 removable을 νŒλ‹¨ν•  μˆ˜λ„ μžˆλ‹€λŠ” 말이닀!


poles of order $m$

\[f(z) = \sum^{\infty}_{n=0} {a_n (z-z_0)^n} + \left\{ \frac{b_1}{(z-z_0)} + \frac{b_2}{(z-z_0)^2} + \cdots \right\}\]

Definition. simple pole
IF $m=1$, THEN it is called a simple pole.


Example.

\[f(z) = \frac{1}{z^2 (z-1)}\]

Evaluate $\underset{z \rightarrow 0}{\lim} {\lvert f(z) \rvert}$.

Sol.
\(\begin{aligned} f(z) &= \frac{1}{z^2 (z-1)} \\ &= - \frac{1}{z^2} \frac{1}{1-z} \\ &= - \frac{1}{z^2} (1+z+z^2+\cdots) \\ &= - \frac{1}{z^2} - \frac{1}{z} - 1 - z - \cdots \quad (\lvert z \rvert < 1) \end{aligned}\)

λ”°λΌμ„œ $z=0$λŠ” order $2$의 pole이닀.

μ΄λ•Œ, $\underset{z \rightarrow 0}{\lim} {\lvert f(z) \rvert}$λŠ” 음수 차수 텀에 μ˜ν•΄

\[\underset{z \rightarrow 0}{\lim} {\lvert f(z) \rvert} = \infty\]

즉, $\underset{z \rightarrow 0}{\lim} {\lvert f(z) \rvert}$κ°€ bounded λ˜μ–΄ μžˆμ§€ μ•ŠμœΌλ―€λ‘œ $z=0$λŠ” removable이 μ•„λ‹ˆλ‹€!

Theorem.
IF $z_0$ is a pole of $f(z)$, THEN

\[\underset{z \rightarrow z_0}{\lim} {\lvert f(z) \rvert} = \infty\]

proof.
증λͺ…은 μ•„μ£Ό κ°„λ‹¨ν•˜λ‹€.

\[\begin{aligned} f(z) &= \sum^{\infty}_{n=0} {a_n (z-z_0)^n} + \left\{ \frac{b_1}{(z-z_0)} + \frac{b_2}{(z-z_0)^2} + \cdots \right\} \\ &= \frac{1}{(z-z_0)^m} \left\{ \sum^{\infty}_{n=0} {a_n (z-z_0)^{n+m}} + \left( b_1 (z-z_0)^{m-1} + b_2 (z-z_0)^{m-2} + \cdots + b_m \right) \right\} \end{aligned}\]

μ΄λ•Œ, $\left\{ \sum^{\infty}_{n=0} {a_n (z-z_0)^{n+m}} + \left( b_1 (z-z_0)^{m-1} + b_2 (z-z_0)^{m-2} + \cdots + b_m \right) \right\}$λŠ” power seriesμ΄λ―€λ‘œ analytic ν•˜λ‹€.

$f(z)$에 λŒ€ν•΄ $z \rightarrow z_0$둜 κ·Ήν•œμ„ μ·¨ν•˜λ©΄,

\[\underset{z \rightarrow z_0}{\lim} {\lvert f(z) \rvert} = \infty \cdot b_m = \infty\]

κ°€ λœλ‹€.


essential singular point

Example.

\[e^{1/z}\]

What is $\underset{z \rightarrow 0}{\lim} e^{1/z}$ ?

Sol.
$e^z$μ—μ„œ $1/z$λ₯Ό λŒ€μž…ν•΄μ£Όλ©΄ μ‰½κ²Œ λ‘œλž‘ κΈ‰μˆ˜λ₯Ό 얻을 수 μžˆλ‹€.

\[e^{1/z} = 1 + \frac{1}{z} + \frac{1}{2!}\frac{1}{z^2} + \cdots\]

이제 $\underset{z \rightarrow 0}{\lim} e^{1/z}$λ₯Ό κ΅¬ν•΄λ³΄μž. 과정이 쑰금 tricky ν•˜λ‹€.

Let $z=x+iy$, THEN $\exp z = e^x \cdot e^{iy}$

μ΄λ•Œ, $e^{iy}$λŠ” $2{\pi}$-periodic이닀.


$e^{1/z}$μ—μ„œ $0 < \lvert z \rvert < r$ ($r$ is small)의 Imageλ₯Ό μƒκ°ν•΄λ³΄μž.

그러면, $r$을 아무리 μž‘κ²Œ μž‘μ•„λ„ $2{\pi}$-strip을 ν¬ν•¨ν•˜κ²Œ 되고, λ”°λΌμ„œ $e^{1/z}$λŠ” 0을 μ œμ™Έν•œ λ³΅μ†Œ 평면 전체가 λœλ‹€!!

λ”°λΌμ„œ $\underset{z \rightarrow 0}{\lim} e^{1/z}$은 $0$을 μ œμ™Έν•œ λ³΅μ†Œ ν‰λ©΄μ˜ μ–΄λŠ 값이든 될 수 μžˆλ‹€!


Theorem. (Great) Picard’s Theorem
IF $f(z)$ is analytic except at $z_0$, and $z_0$ is an isolated essential singular point, THEN in any $\epsilon$-neighborhood of $z_0$, $f(z)$ takes every value, with at most one exceptional value.

// 증λͺ… 없이 μ†Œκ°œλ§Œ ν•˜κ³  λ„˜μ–΄κ°”λ‹€!


zeros and poles

Consider

\[f(z) = \frac{g(z)}{h(z)}\]

where $g(z)$ and $h(z)$ are analytic.

THEN, the singular points of $f(z)$ are zeros of $h(z)$.

(μ•„μ£Ό λ‹Ήμ—°ν•œ μ§„μˆ μ΄λ‹€!)


Definition.
Let $f$ be analytic at $z_0$. IF $f(z_0)=0$ and there is a positive integer $m$ such that

\[f'(z_0) = f''(z_0) = \cdots = f^{(m-1)}(z_0) = 0 \quad \textrm{and} \quad f^{(m)}(z_0) \ne 0\]

THEN $f$ is said to have a zero of order $m$ at $z_0$.

IF $m=1$, THEN it is called a simple zero.
즉, $f(z_0)=0$이고, $f’(z_0) \ne 0$인 경우λ₯Ό λ§ν•œλ‹€.


Example. Talyor series
Taylor series where $f(z)$ is a zero of order $m$ at $z_0$.

\[f(z) = a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \cdots + a_{m-1} (z-z_0)^{m-1} + a_m (z-z_0)^m + \cdots\]

ν…ŒμΌλŸ¬ κΈ‰μˆ˜μ—μ„œ κ³„μˆ˜ $a_k$에 λŒ€ν•΄ μ‚΄νŽ΄λ³΄μž.

\[a_k = \frac{f^{(k)}(z_0)}{k!}\]

μ΄λ•Œ, $f(z)$κ°€ $z_0$μ—μ„œ order $m$μ΄λ―€λ‘œ $k = 0, 1, \cdots, m-1$μ—μ„œ $a_k=0$이닀.

λ”°λΌμ„œ $f(z)$λŠ”

\[\begin{aligned} f(z) &= \left( a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \cdots + a_{m-1} (z-z_0)^{m-1} \right) + a_m (z-z_0)^m + \cdots \\ &= 0 + a_m (z-z_0)^m + \cdots \end{aligned}\]

μ΄λ•Œ, 남은 ν…€λ“€μ—μ„œ $(z-z_0)^m$λ₯Ό 묢을 수 μžˆλ‹€.

\[f(z) = (z-z_0)^m \left( a_m + a_{m+1} (z-z_0)^{m+1} + \cdots \right)\]

$g(z) = a_m + a_{m+1} (z-z_0)^{m+1} + \cdots$라고 ν•˜μž. 그러면, $g(z_0) \ne 0$이 λœλ‹€.

즉, $f(z)$κ°€ μ •ν™•νžˆ $m$개 쀑근을 가진닀.

μ •λ¦¬ν•˜λ©΄, ν•¨μˆ˜ $f(z)$κ°€ a zero of order $m$ at $z_0$이라면, ν•¨μˆ˜ $f(z)$λŠ” $m$개 쀑근을 가진닀.

Theorem.
IF $z_0$ is a zero of order $m$, THEN there is an analytic function $g(z)$ such that

\[f(z) = (z-z_0)^{m}g(z), \quad g(z_0) \ne 0\]



Theorem.
Let $f(z)$ be analytic at $z=z_0$ and have a zero of $m$-th order at $z=z_0$. THEN $1/f(z)$ has a pole of $m$-th order at $z=z_0$. And so does $g(z)/f(z)$ provided $g(z)$ is analytic at $z=z_0$ and $g(z_0) \ne 0$.


proof.

By previous theorem, $f(z)=(z-z_0)^{m}g(z)$ where $g(z)$ is analytic, and $g(z_0) \ne 0$.

Therefore,

\[\frac{1}{f(z)} = \frac{1}{(z-z_0)^m} \cdot \frac{1}{g(z)}\]

μ΄λ•Œ, $\frac{1}{g(z)}$κ°€ $z_0$μ—μ„œ analyticμ΄λ―€λ‘œ Talyor series둜 ν‘œν˜„ κ°€λŠ₯ν•˜λ‹€.

\[\begin{aligned} \frac{1}{f(z)} &= \frac{1}{(z-z_0)^m} \cdot \frac{1}{g(z)} \\ &= \frac{1}{(z-z_0)^m} \cdot \left(a_0 + a_1 (z-z_0) + \cdots \right) \\ &= \frac{a_0}{(z-z_0)^m} + \frac{a_1}{(z-z_0)^{m-1}} + \cdots \end{aligned}\]

λ”°λΌμ„œ $1/f(z)$λŠ” order $m$의 pole을 가진닀. $\blacksquare$


Example. $\cot z$

\[f(z) = \cot z = \frac{\cos z}{\sin z}\]

μ΄λ•Œ, $\sin z$κ°€ $z=0, \pm \pi, \pm 2\pi, \cdots$ μ—μ„œ 0이 되며, λͺ¨λ‘ simple zero 이닀.

Therefore, $\cot z$ has pole at $0, \pm \pi, \pm 2\pi, \cdots$ of order $1$.


Example.

\[f(z) = \frac{z}{z^4 + 4}\]

Find poles of $f(z)$

Sol.

ν•¨μˆ˜μ˜ zeros와 pole에 λŒ€ν•œ 정리에 μ˜ν•΄ $f(z)$의 pole은 $z^4+4 = 0$이 λ˜λŠ” 지점이 λœλ‹€.

\[\begin{aligned} z^4+4 &= 0 \\ z^4 &= -4 \\ (re^{i\theta})^4 &= 4 e^{i(\pi + 2n\pi)} \\ r^4 \cdot e^{i(4\theta)} &= 4 \cdot e^{i(\pi + 2n\pi)} \end{aligned}\] \[r = \sqrt{2}, \quad \theta = \frac{\pi}{4} + \frac{1}{2}k\pi, \quad (k=0, 1, 2, 3) \\\] \[z = 1 + i, \; 1-i, \; -1+i, \; -1-i\]
  1. μœ ν•œ 개의 $b_n$만 0이 μ•„λ‹ˆκ³ , λ‚˜λ¨Έμ§€λŠ” λ‹€ 0인 singular pointΒ 

  2. μ΄λ•Œ, β€˜infinitely many’에 λŒ€ν•œ ꡬ체적인 λ¬˜μ‚¬λŠ” μ—†μŒ! λͺ¨λ“  짝수 κ³„μˆ˜κ°€ $b_n \ne 0$이 아닐 μˆ˜λ„ 있고, $n \ge m+1$에 λŒ€ν•΄ $b_n \ne 0$일 μˆ˜λ„ 있음!Β