2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

3 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


μ΄μ „κΉŒμ§€λŠ” residueλ₯Ό κ΅¬ν•˜κΈ° μœ„ν•΄ ν•¨μˆ˜ $f(z)$의 λ‘œλž‘ κΈ‰μˆ˜λ₯Ό ꡬ해 $b_1$을 κ΅¬ν•˜λŠ” 방법을 μ‚¬μš©ν–ˆλ‹€.

그런데 λ§Œμ•½ $f(z)$κ°€ niceν•œ 쑰건을 가지고 있음이 ν™•μΈλœλ‹€λ©΄, λ‘œλž‘ κΈ‰μˆ˜λ₯Ό κ΅¬ν•˜μ§€ μ•Šκ³ λ„ μ†μ‰½κ²Œ residueλ₯Ό ꡬ할 수 μžˆλ‹€!!


review. Cauchy’s residue theorem

\[\oint_{C} {f(z) dz} = 2{\pi}i \left(\sum^{n}_{k=1} \underset{z=z_k}{\textrm{Res}} f(z) \right)\]


review.
Let $p(z)$ and $q(z)$ be analytic functions. Supp. that $q(z)$ has a zero of $m$-th order at $z=z_0$ and $p(z_0) \ne 0$.

THEN

\[f(z) = \frac{p(z)}{q(z)}\]

has a pole at $z=z_0$ of order $m$


Formulas for residues

simple poles at $z_0$

Consider

\[f(z) = \frac{p(z)}{q(z)}\]

where $p(z)$ and $q(z)$ are analytic functions. Supp. that $q(z)$ has a simple zero at $z=z_0$ and $p(z_0) \ne 0$.

THEN

\[\underset{z=z_0}{\textrm{Res}} {f(z)} = \lim_{z \rightarrow z_0} {(z-z_0)} \cdot f(z) = \frac{p(z_0)}{q'(z_0)}\]

proof.
We can express $f(z)$ as follows

\[f(z) = \frac{b_1}{(z-z_0)} + a_1 + a_2 (z-z_0) + \cdots\]

THEN

\[(z-z_0)f(z) = b_1 + a_1(z-z_0) + a_2 (z-z_0)^2 + \cdots\]

THEN, take limit for that

\[\lim_{z \rightarrow z_0} {(z-z_0)f(z)} = b_1\]

λ”°λΌμ„œ $\lim_{z \rightarrow z_0} {(z-z_0)f(z)}$λ₯Ό 톡해 residueλ₯Ό μ†μ‰½κ²Œ ꡬ할 수 μžˆλ‹€!!


κ·Έ λ‹€μŒ 곡식은 $\lim_{z \rightarrow z_0} {(z-z_0)f(z)}$에 μ•½κ°„μ˜ trick을 μ¨μ„œ ꡬ할 수 μžˆλ‹€.

\[\begin{aligned} \lim_{z \rightarrow z_0} {(z-z_0)f(z)} &= \\ \lim_{z \rightarrow z_0} {(z-z_0) \frac{p(z)}{q(z)}} &= \lim_{z \rightarrow z_0} {\frac{p(z)}{\frac{q(z) - q(z_0)}{z-z_0}}} \\ &= \frac{p(z_0)}{q'(z_0)} \end{aligned}\]

poles of order $m$

\[\underset{z=z_0}{\textrm{Res}} {f(z)} = \frac{1}{(m-1)!} \lim_{z \rightarrow z_0} {\left(\frac{d}{dz}\right)^{(m-1)}\left[(z-z_0)^m f(z)\right]}\]

proof.

\[\begin{aligned} f(z) &= \frac{b_m}{(z-z_0)^m} + \cdots + \frac{b_1}{(z-z_0)} + a_0 + a_1 (z-z_0) + \cdots \\ (z-z_0)^m f(z) &= b_m + \cdots + b_1(z-z_0) ^m + a_0 (z-z_0)^m + \cdots \end{aligned}\]

$(z-z_0)^m f(z)$μ—μ„œ $b_1$을 μ–»κΈ° μœ„ν•΄μ„  $(m-1)$번 λ―ΈλΆ„ν•΄μ•Ό ν•œλ‹€.

\[\begin{aligned} {\left(\frac{d}{dz}\right)^{(m-1)}\left[(z-z_0)^m f(z)\right]} &= \frac{b_1}{(m-1)!} + \frac{a_0}{(m-1)!}(z-z_0) + \cdots \\ \lim_{z \rightarrow z_0}{\left(\frac{d}{dz}\right)^{(m-1)}\left[(z-z_0)^m f(z)\right]} &= \frac{b_1}{(m-1)!} \end{aligned}\]

λ”°λΌμ„œ order $m$에 λŒ€ν•œ $b_1 = \underset{z=z_0}{\textrm{Res}} {f(z)}$λŠ” μœ„μ™€ 같은 μ‹μœΌλ‘œ ꡬ할 수 μžˆλ‹€!


Example.

\[f(z) = \frac{9z+i}{z^3+z}\]

Find residues of $f(z)$.


Sol.
$q(z) = z^3+z = z(z^2+1)$

λ”°λΌμ„œ $f(z)$의 pole은

\[z=0, \; +i, \; -i\]

이고, λͺ¨λ‘ simple pole이닀.

(i) residue for $z=0$

\[\begin{aligned} zf(z) &= z \cdot \frac{9z+i}{z(z^2+1)} = \frac{9z+i}{z^2+1} \\ \lim_{z \rightarrow 0} zf(z) &= \frac{i}{1} = i \end{aligned}\]

λ”°λΌμ„œ $\underset{z=0}{\textrm{Res}} f(z) = i$.

(ii), (iii) residue for $z=+i, \; -i$λŠ” 생-랡