Formulas for residue
2020-2νκΈ°, λνμμ βμμ©λ³΅μν¨μλ‘ β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
μ΄μ κΉμ§λ residueλ₯Ό ꡬνκΈ° μν΄ ν¨μ $f(z)$μ λ‘λ κΈμλ₯Ό κ΅¬ν΄ $b_1$μ ꡬνλ λ°©λ²μ μ¬μ©νλ€.
κ·Έλ°λ° λ§μ½ $f(z)$κ° niceν 쑰건μ κ°μ§κ³ μμμ΄ νμΈλλ€λ©΄, λ‘λ κΈμλ₯Ό ꡬνμ§ μκ³ λ μμ½κ² residueλ₯Ό ꡬν μ μλ€!!
review. Cauchyβs residue theorem
review.
Let $p(z)$ and $q(z)$ be analytic functions. Supp. that $q(z)$ has a zero of $m$-th order at $z=z_0$ and $p(z_0) \ne 0$.
THEN
\[f(z) = \frac{p(z)}{q(z)}\]has a pole at $z=z_0$ of order $m$
Formulas for residues
simple poles at $z_0$
Consider
\[f(z) = \frac{p(z)}{q(z)}\]where $p(z)$ and $q(z)$ are analytic functions. Supp. that $q(z)$ has a simple zero at $z=z_0$ and $p(z_0) \ne 0$.
THEN
\[\underset{z=z_0}{\textrm{Res}} {f(z)} = \lim_{z \rightarrow z_0} {(z-z_0)} \cdot f(z) = \frac{p(z_0)}{q'(z_0)}\]proof.
We can express $f(z)$ as follows
THEN
\[(z-z_0)f(z) = b_1 + a_1(z-z_0) + a_2 (z-z_0)^2 + \cdots\]THEN, take limit for that
\[\lim_{z \rightarrow z_0} {(z-z_0)f(z)} = b_1\]λ°λΌμ $\lim_{z \rightarrow z_0} {(z-z_0)f(z)}$λ₯Ό ν΅ν΄ residueλ₯Ό μμ½κ² ꡬν μ μλ€!!
κ·Έ λ€μ 곡μμ $\lim_{z \rightarrow z_0} {(z-z_0)f(z)}$μ μ½κ°μ trickμ μ¨μ ꡬν μ μλ€.
\[\begin{aligned} \lim_{z \rightarrow z_0} {(z-z_0)f(z)} &= \\ \lim_{z \rightarrow z_0} {(z-z_0) \frac{p(z)}{q(z)}} &= \lim_{z \rightarrow z_0} {\frac{p(z)}{\frac{q(z) - q(z_0)}{z-z_0}}} \\ &= \frac{p(z_0)}{q'(z_0)} \end{aligned}\]poles of order $m$
\[\underset{z=z_0}{\textrm{Res}} {f(z)} = \frac{1}{(m-1)!} \lim_{z \rightarrow z_0} {\left(\frac{d}{dz}\right)^{(m-1)}\left[(z-z_0)^m f(z)\right]}\]proof.
$(z-z_0)^m f(z)$μμ $b_1$μ μ»κΈ° μν΄μ $(m-1)$λ² λ―ΈλΆν΄μΌ νλ€.
\[\begin{aligned} {\left(\frac{d}{dz}\right)^{(m-1)}\left[(z-z_0)^m f(z)\right]} &= \frac{b_1}{(m-1)!} + \frac{a_0}{(m-1)!}(z-z_0) + \cdots \\ \lim_{z \rightarrow z_0}{\left(\frac{d}{dz}\right)^{(m-1)}\left[(z-z_0)^m f(z)\right]} &= \frac{b_1}{(m-1)!} \end{aligned}\]λ°λΌμ order $m$μ λν $b_1 = \underset{z=z_0}{\textrm{Res}} {f(z)}$λ μμ κ°μ μμΌλ‘ ꡬν μ μλ€!
Example.
Find residues of $f(z)$.
Sol.
$q(z) = z^3+z = z(z^2+1)$
λ°λΌμ $f(z)$μ poleμ
\[z=0, \; +i, \; -i\]μ΄κ³ , λͺ¨λ simple poleμ΄λ€.
(i) residue for $z=0$
\[\begin{aligned} zf(z) &= z \cdot \frac{9z+i}{z(z^2+1)} = \frac{9z+i}{z^2+1} \\ \lim_{z \rightarrow 0} zf(z) &= \frac{i}{1} = i \end{aligned}\]λ°λΌμ $\underset{z=0}{\textrm{Res}} f(z) = i$.
(ii), (iii) residue for $z=+i, \; -i$λ μ-λ΅