2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

7 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


λ³΅μ†Œ μ λΆ„μ˜ κ²°κ³Όλ₯Ό μ΄μš©ν•΄ μ‹€μˆ˜ μ˜μ—­μ—μ„œμ˜ 적뢄을 ν•΄κ²°ν•  수 μžˆμŠ΅λ‹ˆλ‹€ γ…Žγ…Ž

residueλ₯Ό μ΄μš©ν•΄ 두 가지 ν˜•νƒœμ˜ 적뢄을 μ‰½κ²Œ λ‹€λ£° 수 μžˆμŠ΅λ‹ˆλ‹€.

1. Integrals of rational functions of $\cos \theta$ and $\sin \theta$

\[\int^{2{\pi}}_{0} {F(\cos \theta, \sin \theta) d\theta}\]

2. Improper integrals

\[\int^{\infty}_{0} {f(x) \; dx} \quad \textrm{or} \quad \int^{\infty}_{-\infty} {f(x) \; dx}\]

Integrals of rational functions of $\cos \theta$ and $\sin \theta$

\[\int^{2{\pi}}_{0} {F(\cos \theta, \sin \theta) d\theta}\]

Main idea.
Use $z=e^{i\theta}$

예제λ₯Ό λ¨Όμ € μ‚΄νŽ΄λ³΄μž!


Example.

\[\int^{2{\pi}}_{0} {\frac{1}{\sqrt{2} - \cos\theta} d\theta}\]

Sol.
μΉ˜ν™˜ μ λΆ„μ˜ 아이디어λ₯Ό μ‚¬μš©ν•œλ‹€!

\[\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2} \left( z + \frac{1}{z} \right)\] \[\begin{aligned} z &= e^{i\theta} \\ dz &= i \cdot e^{i\theta} d\theta \\ &= i \cdot z \; d\theta \end{aligned}\]

$dz = i \cdot z \; d\theta$λ₯Ό 잘 μ •λ¦¬ν•˜λ©΄,

\[\begin{aligned} dz &= i \cdot z \; d\theta \\ \frac{1}{iz} \; dz &= d\theta \end{aligned}\]

이제 적뢄 λ²”μœ„μ— λŒ€ν•΄ μ‚΄νŽ΄λ³΄μž.

$\theta: 0 \rightarrow 2\pi$ μ΄λ―€λ‘œ $z$둜의 μΉ˜ν™˜μ„ 잘 μ‚΄νŽ΄λ³΄λ©΄, 주어진 적뢄은 $\lvert z \rvert = 1$에 λŒ€ν•œ contour 적뢄을 ν•˜λŠ” 것과 λ™μΌν•˜λ‹€!

λ”°λΌμ„œ

\[\begin{aligned} \int^{2{\pi}}_{0} {\frac{1}{\sqrt{2} - \cos\theta} d\theta} &= \oint_{C} \frac{1}{\sqrt{2} - \frac{1}{2}\left(z+\frac{1}{z}\right)} \frac{dz}{iz} \\ &= \frac{1}{i} \cdot \oint_{C} \frac{1}{\sqrt{2} z - \frac{z^2+1}{2}} dz \\ &= - \frac{1}{2i} \oint_{C} \frac{1}{z^2 - 2\sqrt{2}z + 1} dz \end{aligned}\]

Let $q(z) = z^2 - 2\sqrt{2}z + 1$, THEN

\[\begin{aligned} q(z) = z^2 - 2\sqrt{2}z + 1 &= 0\\ z^2 - 2\sqrt{2}z + 2 &= 1 \\ z^2 - 2\sqrt{2}z + (\sqrt{2})^2 &= 1 \\ (z-\sqrt{2})^2 &= 1 \\ \therefore \quad z &= \pm 1 + \sqrt{2} \end{aligned}\]

이제 $f(z)$의 poleκ³Ό contour 사이 포함 관계λ₯Ό 잘 νŒŒμ•…ν•˜μ—¬ 적뢄을 잘 μˆ˜ν–‰ν•œλ‹€.


$z=\sqrt{2} - 1 < 1$ μ΄λ―€λ‘œ $z=\sqrt{2} - 1$λŠ” contour $\lvert z \rvert < 1$ 내뢀에 μ‘΄μž¬ν•œλ‹€.

λ”°λΌμ„œ $f(z)$에 λŒ€ν•œ 적뢄은 $z=\sqrt{2} - 1$에 λŒ€ν•œ residueλ₯Ό κ΅¬ν•˜λŠ” κ²ƒμœΌλ‘œ μ‰½κ²Œ ꡬ할 수 μžˆλ‹€!

\[\underset{z=\sqrt{2} - 1}{\textrm{Res}} f(z) = \lim_{z \rightarrow \sqrt{2} - 1} \frac{1}{z-(\sqrt{z} + 1)} = - \frac{1}{2}\]

λ”°λΌμ„œ

\[\begin{aligned} \int^{2{\pi}}_{0} {\frac{1}{\sqrt{2} - \cos\theta} d\theta} &= \oint_{C} \frac{1}{\sqrt{2} - \frac{1}{2}\left(z+\frac{1}{z}\right)} \frac{dz}{iz} \\ &= - \frac{1}{2i} \oint_{C} \frac{1}{z^2 - 2\sqrt{2}z + 1} dz \\ &= - \frac{1}{2i} \cdot \left\{ 2{\pi}i \cdot \underset{z=\sqrt{2} - 1}{\textrm{Res}} f(z) \right\} \\ &= - \frac{1}{2i} \cdot \left\{ 2{\pi}i \cdot - \frac{1}{2} \right\} \\ &= \frac{\pi}{2} \end{aligned}\]

$\blacksquare$


Example.
Let $-1 < a < 1$,

\[\int^{2\pi}_{0} \frac{1}{1+a\sin\theta} d\theta = \frac{2\pi}{\sqrt{1-a^2}}\]



Improper integral

\[\int^{\infty}_{0} {f(x) \; dx} \quad \textrm{or} \quad \int^{\infty}_{-\infty} {f(x) \; dx}\]

Improper integral은 적뢄 λ²”μœ„μ— $\infty$κ°€ μžˆλŠ” 것이 νŠΉμ§•μ΄λ‹€.

이것 μ—­μ‹œ 예제λ₯Ό 톡해 residueλ₯Ό μ–΄λ–»κ²Œ μ“°λŠ”μ§€ μ‚΄νŽ΄λ³΄μž.


Example.

\[\int^{\infty}_{-\infty} \frac{1}{1+x^2} dx\]

Sol.

λ¨Όμ €, improper integral을 κ·Ήν•œκ³Ό ν•¨κ»˜ λ‹€μ‹œ 써보자.

\[\int^{\infty}_{-\infty} \frac{1}{1+x^2} dx = \lim_{R \rightarrow \infty} \int^{R}_{-R} \frac{1}{1+x^2} dx\]

Let $f(z) = \frac{1}{1+x^2}$, THEN there are two poles at $z=i$ and $z=-i$.


이제 적뢄할 contourλ₯Ό λ‹€μŒκ³Ό 같이 μž‘μ•„λ³΄μž.

그리고 contour 적뢄을 해보면,

\[\oint_{D_R} f(z) dz = \int^{R}_{-R} f(z) dz + \int_{C_R} f(z) dz\]

μ—¬κΈ°μ„œ $\oint_{D_R} f(z) dz$λŠ” residue thm에 따라

\[\begin{aligned} \oint_{D_R} f(z) dz &= \oint_{D_R} \frac{1}{1+z^2} dz \\ &= \oint_{D_R} \frac{1}{(z+i)(z-i)} \\ &= 2{\pi}i \cdot \underset{z=i}{\textrm{Res}} \frac{1}{(z+i)(z-i)} \\ &= 2{\pi}i \cdot \frac{1}{2i} = \pi \end{aligned}\]


이제 μ λΆ„μ—μ„œ arc integral인 $\int_{C_R} f(z) dz$에 λŒ€ν•΄ μ‚΄νŽ΄λ³΄μž.

μ΄λ•Œ, $\int_{C_R} f(z) dz$의 μ •ν™•ν•œ 적뢄값은 κ΅¬ν•˜μ§€ μ•Šκ³ , ML-inequalityλ₯Ό μ‚¬μš©ν•΄ bound만 ꡬ할 것이닀.

\[\begin{aligned} \left\lvert \int_{C_R} \frac{1}{1+z^2} dz \right\rvert &\le \frac{1}{R^2 - 1} \cdot {\pi}R \\ & \rightarrow 0 \quad \textrm{as} \quad R \rightarrow \infty \end{aligned}\]

즉, $R \rightarrow \infty$ 일 λ•Œ, $\int_{C_R} f(z) dz$κ°€ 0으둜 μˆ˜λ ΄ν•˜λ―€λ‘œ

\[\begin{aligned} \lim_{R \rightarrow \infty} \left\{ \oint_{D_R} f(z) dz \right\} &= \lim_{R \rightarrow \infty} \left\{ \int^{R}_{-R} f(z) dz \right\} + \lim_{R \rightarrow \infty} \left\{ \int_{C_R} f(z) dz \right\} \\ \pi &= \lim_{R \rightarrow \infty} \left\{ \int^{R}_{-R} f(z) dz \right\} + 0\\ \pi &= \int^{\infty}_{-\infty} f(z) dz \end{aligned}\]

Therefore,

\[\int^{\infty}_{-\infty} \frac{1}{1+z^2} dz = \pi\]

$\blacksquare$



Definition. improper integral
IF $f(z)$ is continuous on $(-\infty, \infty)$

\[\int^{\infty}_{\infty} f(x) \; dx = \lim_{R_1 \rightarrow \infty} \int^{a}_{-R_1} f(x) \; dx + \lim_{R_2 \rightarrow \infty} \int^{R_2}_{a} f(x) \; dx\]


Definition. Cauchy principal value of improper integral

λ§Œμ•½ improper integral에 λŒ€ν•œ 두 μ λΆ„μ˜ κ·Ήν•œκ°’μ΄ μ‘΄μž¬ν•œλ‹€λ©΄,

Cauchy principal value of $\int^{\infty}_{\infty} f(x) \; dx$ is defined by

\[\lim_{R \rightarrow \infty} \int^{R}_{-R} f(x) \; dx\]


Caution!
일반적으둜 improper integralκ³Ό Cauchy P.V.λ₯Ό κ°™λ‹€κ³  단정할 순 μ—†μŒ!

Example.
Calculate both improper integral and Cauchy P.V.

\[\int^{\infty}_{-\infty} x \; dx\]

1. impropr integral

\[\begin{aligned} \int^{\infty}_{-\infty} x \; dx &= \lim_{R_1 \rightarrow \infty} \int^{0}_{-R_1} x \; dx + \lim_{R_2 \rightarrow \infty} \int^{R_2}_{0} x \; dx \\ &= -\infty + \infty \\ &= \textrm{undefined} \end{aligned}\]

2. Cauchy P.V.

\[\begin{aligned} \int^{\infty}_{-\infty} x \; dx &= \lim_{R \rightarrow \infty} \int^{R}_{-R} x \; dx \\ &= 0 \quad (\because x \textrm{ is odd function.}) \end{aligned} \\\]

λ”°λΌμ„œ 일반적으둜 improper integralκ³Ό Cauchy P.V.λ₯Ό κ°™λ‹€κ³  단정할 순 μ—†λ‹€! $\blacksquare$