Applications to real integrals
2020-2νκΈ°, λνμμ βμμ©λ³΅μν¨μλ‘ β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
볡μ μ λΆμ κ²°κ³Όλ₯Ό μ΄μ©ν΄ μ€μ μμμμμ μ λΆμ ν΄κ²°ν μ μμ΅λλ€ γ γ
residueλ₯Ό μ΄μ©ν΄ λ κ°μ§ ννμ μ λΆμ μ½κ² λ€λ£° μ μμ΅λλ€.
1. Integrals of rational functions of $\cos \theta$ and $\sin \theta$
\[\int^{2{\pi}}_{0} {F(\cos \theta, \sin \theta) d\theta}\]2. Improper integrals
\[\int^{\infty}_{0} {f(x) \; dx} \quad \textrm{or} \quad \int^{\infty}_{-\infty} {f(x) \; dx}\]Integrals of rational functions of $\cos \theta$ and $\sin \theta$
\[\int^{2{\pi}}_{0} {F(\cos \theta, \sin \theta) d\theta}\]Main idea.
Use $z=e^{i\theta}$
μμ λ₯Ό λ¨Όμ μ΄ν΄λ³΄μ!
Example.
Sol.
μΉν μ λΆμ μμ΄λμ΄λ₯Ό μ¬μ©νλ€!
$dz = i \cdot z \; d\theta$λ₯Ό μ μ 리νλ©΄,
\[\begin{aligned} dz &= i \cdot z \; d\theta \\ \frac{1}{iz} \; dz &= d\theta \end{aligned}\]μ΄μ μ λΆ λ²μμ λν΄ μ΄ν΄λ³΄μ.
$\theta: 0 \rightarrow 2\pi$ μ΄λ―λ‘ $z$λ‘μ μΉνμ μ μ΄ν΄λ³΄λ©΄, μ£Όμ΄μ§ μ λΆμ $\lvert z \rvert = 1$μ λν contour μ λΆμ νλ κ²κ³Ό λμΌνλ€!
λ°λΌμ
\[\begin{aligned} \int^{2{\pi}}_{0} {\frac{1}{\sqrt{2} - \cos\theta} d\theta} &= \oint_{C} \frac{1}{\sqrt{2} - \frac{1}{2}\left(z+\frac{1}{z}\right)} \frac{dz}{iz} \\ &= \frac{1}{i} \cdot \oint_{C} \frac{1}{\sqrt{2} z - \frac{z^2+1}{2}} dz \\ &= - \frac{1}{2i} \oint_{C} \frac{1}{z^2 - 2\sqrt{2}z + 1} dz \end{aligned}\]Let $q(z) = z^2 - 2\sqrt{2}z + 1$, THEN
\[\begin{aligned} q(z) = z^2 - 2\sqrt{2}z + 1 &= 0\\ z^2 - 2\sqrt{2}z + 2 &= 1 \\ z^2 - 2\sqrt{2}z + (\sqrt{2})^2 &= 1 \\ (z-\sqrt{2})^2 &= 1 \\ \therefore \quad z &= \pm 1 + \sqrt{2} \end{aligned}\]μ΄μ $f(z)$μ poleκ³Ό contour μ¬μ΄ ν¬ν¨ κ΄κ³λ₯Ό μ νμ νμ¬ μ λΆμ μ μννλ€.
$z=\sqrt{2} - 1 < 1$ μ΄λ―λ‘ $z=\sqrt{2} - 1$λ contour $\lvert z \rvert < 1$ λ΄λΆμ μ‘΄μ¬νλ€.
λ°λΌμ $f(z)$μ λν μ λΆμ $z=\sqrt{2} - 1$μ λν residueλ₯Ό ꡬνλ κ²μΌλ‘ μ½κ² ꡬν μ μλ€!
\[\underset{z=\sqrt{2} - 1}{\textrm{Res}} f(z) = \lim_{z \rightarrow \sqrt{2} - 1} \frac{1}{z-(\sqrt{z} + 1)} = - \frac{1}{2}\]λ°λΌμ
\[\begin{aligned} \int^{2{\pi}}_{0} {\frac{1}{\sqrt{2} - \cos\theta} d\theta} &= \oint_{C} \frac{1}{\sqrt{2} - \frac{1}{2}\left(z+\frac{1}{z}\right)} \frac{dz}{iz} \\ &= - \frac{1}{2i} \oint_{C} \frac{1}{z^2 - 2\sqrt{2}z + 1} dz \\ &= - \frac{1}{2i} \cdot \left\{ 2{\pi}i \cdot \underset{z=\sqrt{2} - 1}{\textrm{Res}} f(z) \right\} \\ &= - \frac{1}{2i} \cdot \left\{ 2{\pi}i \cdot - \frac{1}{2} \right\} \\ &= \frac{\pi}{2} \end{aligned}\]$\blacksquare$
Example.
Let $-1 < a < 1$,
Improper integral
\[\int^{\infty}_{0} {f(x) \; dx} \quad \textrm{or} \quad \int^{\infty}_{-\infty} {f(x) \; dx}\]Improper integralμ μ λΆ λ²μμ $\infty$κ° μλ κ²μ΄ νΉμ§μ΄λ€.
μ΄κ² μμ μμ λ₯Ό ν΅ν΄ residueλ₯Ό μ΄λ»κ² μ°λμ§ μ΄ν΄λ³΄μ.
Example.
Sol.
λ¨Όμ , improper integralμ κ·Ήνκ³Ό ν¨κ» λ€μ μ¨λ³΄μ.
\[\int^{\infty}_{-\infty} \frac{1}{1+x^2} dx = \lim_{R \rightarrow \infty} \int^{R}_{-R} \frac{1}{1+x^2} dx\]Let $f(z) = \frac{1}{1+x^2}$, THEN there are two poles at $z=i$ and $z=-i$.
μ΄μ μ λΆν contourλ₯Ό λ€μκ³Ό κ°μ΄ μ‘μ보μ.
κ·Έλ¦¬κ³ contour μ λΆμ ν΄λ³΄λ©΄,
\[\oint_{D_R} f(z) dz = \int^{R}_{-R} f(z) dz + \int_{C_R} f(z) dz\]μ¬κΈ°μ $\oint_{D_R} f(z) dz$λ residue thmμ λ°λΌ
\[\begin{aligned} \oint_{D_R} f(z) dz &= \oint_{D_R} \frac{1}{1+z^2} dz \\ &= \oint_{D_R} \frac{1}{(z+i)(z-i)} \\ &= 2{\pi}i \cdot \underset{z=i}{\textrm{Res}} \frac{1}{(z+i)(z-i)} \\ &= 2{\pi}i \cdot \frac{1}{2i} = \pi \end{aligned}\]μ΄μ μ λΆμμ arc integralμΈ $\int_{C_R} f(z) dz$μ λν΄ μ΄ν΄λ³΄μ.
μ΄λ, $\int_{C_R} f(z) dz$μ μ νν μ λΆκ°μ ꡬνμ§ μκ³ , ML-inequalityλ₯Ό μ¬μ©ν΄ boundλ§ κ΅¬ν κ²μ΄λ€.
\[\begin{aligned} \left\lvert \int_{C_R} \frac{1}{1+z^2} dz \right\rvert &\le \frac{1}{R^2 - 1} \cdot {\pi}R \\ & \rightarrow 0 \quad \textrm{as} \quad R \rightarrow \infty \end{aligned}\]μ¦, $R \rightarrow \infty$ μΌ λ, $\int_{C_R} f(z) dz$κ° 0μΌλ‘ μλ ΄νλ―λ‘
\[\begin{aligned} \lim_{R \rightarrow \infty} \left\{ \oint_{D_R} f(z) dz \right\} &= \lim_{R \rightarrow \infty} \left\{ \int^{R}_{-R} f(z) dz \right\} + \lim_{R \rightarrow \infty} \left\{ \int_{C_R} f(z) dz \right\} \\ \pi &= \lim_{R \rightarrow \infty} \left\{ \int^{R}_{-R} f(z) dz \right\} + 0\\ \pi &= \int^{\infty}_{-\infty} f(z) dz \end{aligned}\]Therefore,
\[\int^{\infty}_{-\infty} \frac{1}{1+z^2} dz = \pi\]$\blacksquare$
Definition. improper integral
IF $f(z)$ is continuous on $(-\infty, \infty)$
Definition. Cauchy principal value of improper integral
λ§μ½ improper integralμ λν λ μ λΆμ κ·Ήνκ°μ΄ μ‘΄μ¬νλ€λ©΄,
Cauchy principal value of $\int^{\infty}_{\infty} f(x) \; dx$ is defined by
\[\lim_{R \rightarrow \infty} \int^{R}_{-R} f(x) \; dx\]Caution!
μΌλ°μ μΌλ‘ improper integralκ³Ό Cauchy P.V.λ₯Ό κ°λ€κ³ λ¨μ ν μ μμ!
Example.
Calculate both improper integral and Cauchy P.V.
1. impropr integral
\[\begin{aligned} \int^{\infty}_{-\infty} x \; dx &= \lim_{R_1 \rightarrow \infty} \int^{0}_{-R_1} x \; dx + \lim_{R_2 \rightarrow \infty} \int^{R_2}_{0} x \; dx \\ &= -\infty + \infty \\ &= \textrm{undefined} \end{aligned}\]2. Cauchy P.V.
\[\begin{aligned} \int^{\infty}_{-\infty} x \; dx &= \lim_{R \rightarrow \infty} \int^{R}_{-R} x \; dx \\ &= 0 \quad (\because x \textrm{ is odd function.}) \end{aligned} \\\]λ°λΌμ μΌλ°μ μΌλ‘ improper integralκ³Ό Cauchy P.V.λ₯Ό κ°λ€κ³ λ¨μ ν μ μλ€! $\blacksquare$