Ring - 2
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
μ°λ¦¬κ° Groupμ λΆλ₯νλ―μ΄ Ringμ λΆλ₯ν΄λ³΄μ!
Keyword.
- Unity & unit
- division ring
- field & skew field
- Quaternion
- zero-divisor
- Integral Domain; μ μ
Definition. Zero ring
μμκ° νλ λΏμΈ Ring.
Definition. Unity & unit
Let
- Unity: a multiplicative identity.
- unit: κ³±μ λν μμμ΄ μ‘΄μ¬νλ μμ
Example.
μμ Unitiy: μμ unit:
Theorem.
If the multiplicative identity exist, it is unique.
proof.
βadditive identityμ μ μΌμ±β μ¦λͺ κ³Ό λΉμ·ν λ§₯λ½μΌλ‘ νλ©΄ λ¨.
Example.
HW.
THEN
Division RingPermalink
Definition. division ring
Let
μ¦,
Field & skew-fieldPermalink
Definition. field & skew field
Division Ringμ΄ κ³±μ λν΄ κ°νμΈμ§ μ¬λΆμ λ°λΌ
- Commutative division ring
- Field
- κ³±μ μ λν΄ κ΅°μ μ΄λ£¨λ©΄μ, κ·Έκ²μ΄ κ°νκ΅°
- non-Commutative division ring
- skew Field
- κ³±μ μ λν΄ κ΅°μ μ΄λ£¨μ§λ§, κ°νμ΄ μλ
Example.
μλνλ©΄,
Example.
λ°λΌμ
λ§μ°¬κ°μ§λ‘
QuternionPermalink
Example. quaternion set
The set of quaternions is a skew field.
Definition. Quaternion
- λ§μ μ component-wise additionμΌλ‘ μ μ
-
κ³±μ μ quaterion units
, , μ λν κ·μΉμ λ°λΌ μν - κ³±μ
μ λν μμ:
- κ³±μ
μ λν νλ±μ:
βQuaternionμ 3μ°¨μ νμ μμ μ¬μ©νλ€!β
zero-divisorPermalink
Definition. zero-divisor
Let
IF
Example.
In
λ°λΌμ
Theorem.
In
proof.
Let non-zero
THEN,
μ¦,
Corollary.
IF
proof.
Theorem.
IF
μ¦, λͺ¨λ non-zero elementκ° multiplicative inverseλ₯Ό κ°μ§λ€λ λ§!!
proof.
Let non-zero
Since
BΓ©zout's Identityμ μν΄,
μμ μμμ module
μ΄λ,
Integral DomainPermalink
Definition. Integral Domain; μ μ
An Integral Domain is a commutative ring with Unitiy, and without zero-divisors.
Example.
Homework.
Theorem. Bezoutβs Identity
For
1. if
2. if
proof.
2λ² λͺ μ λ§ μ¦λͺ ν΄λ³΄μ.
λ°λΌμ 1λ² λͺ μ μ μν΄ Bezoutβs Identityκ° μ‘΄μ¬νλ€.
μλ³μ
μΈ μμ μ»λλ€.
Definition. Characteristics of Ring; νμ νμ
If there exist
then call the smallest
β» If there is no such
Example.
Char- of
(
Char- of
Theorem.
Let
then
proof.
(
(
Let