2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

7 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

์šฐ๋ฆฌ๊ฐ€ Group์„ ๋ถ„๋ฅ˜ํ–ˆ๋“ฏ์ด Ring์„ ๋ถ„๋ฅ˜ํ•ด๋ณด์ž!

Keyword.

  • Unity & unit
  • division ring
  • field & skew field
  • Quaternion
  • zero-divisor
  • Integral Domain; ์ •์—ญ

Definition. Zero ring

\[\{ 0 \}\]

์›์†Œ๊ฐ€ ํ•˜๋‚˜ ๋ฟ์ธ Ring.


Definition. Unity & unit

Let $R$ is a ring, THEN

  • Unity: a multiplicative identity.
  • unit: ๊ณฑ์— ๋Œ€ํ•œ ์—ญ์›์ด ์กด์žฌํ•˜๋Š” ์›์†Œ


Example.

  • $\mathbb{Z}$์—์„œ Unitiy: $1$
  • $\mathbb{Z}$์—์„œ unit: $\{1, -1\}$



Theorem.

If the multiplicative identity exist, it is unique.


proof.

โ€œadditive identity์˜ ์œ ์ผ์„ฑโ€ ์ฆ๋ช…๊ณผ ๋น„์Šทํ•œ ๋งฅ๋ฝ์œผ๋กœ ํ•˜๋ฉด ๋จ.


Example.

$\mathbb{Z}_{rs} \cong \mathbb{Z}_r \times \mathbb{Z}_s$ is ring, IF $(r, s) = 1$.

HW.

\[\begin{aligned} \phi : \mathbb{Z}_{rs} &\longrightarrow \mathbb{Z}_r \times \mathbb{Z}_s \\ n &\longmapsto n(1, 1) \end{aligned}\]

THEN $\phi$ is a ring isomorphism.



Division Ring

Definition. division ring

Let $R$ be a ring with unity,

$R$ is a division ring, IF every non-zero element has a mutliplicative inverse.

์ฆ‰, $R\setminus\{0\}$ is a group w.r.t. multiplication.


Field & skew-field

Definition. field & skew field

Division Ring์ด ๊ณฑ์— ๋Œ€ํ•ด ๊ฐ€ํ™˜์ธ์ง€ ์—ฌ๋ถ€์— ๋”ฐ๋ผ

  • Commutative division ring
    • Field
    • ๊ณฑ์…ˆ์— ๋Œ€ํ•ด ๊ตฐ์„ ์ด๋ฃจ๋ฉด์„œ, ๊ทธ๊ฒƒ์ด ๊ฐ€ํ™˜๊ตฐ
  • non-Commutative division ring
    • skew Field
    • ๊ณฑ์…ˆ์— ๋Œ€ํ•ด ๊ตฐ์„ ์ด๋ฃจ์ง€๋งŒ, ๊ฐ€ํ™˜์ด ์•„๋‹˜


Example. $2\mathbb{Z}$

$2\mathbb{Z}$ is a commutative ring without unity.

์™œ๋ƒํ•˜๋ฉด, $1\notin 2\mathbb{Z}$๋ผ์„œ


Example. $\mathbb{Q}$

$\mathbb{Q}$ is a division ring, also commutative ring.

๋”ฐ๋ผ์„œ $\mathbb{Q}$๋Š” Field๋‹ค!!

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $\mathbb{R}$, $\mathbb{C}$๋„ Field์ž„!



Quternion

Example. quaternion set

The set of quaternions is a skew field.


Definition. Quaternion $Q$

\[Q = \{w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \mid \mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1\}\]
  • ๋ง์…ˆ์€ component-wise addition์œผ๋กœ ์ •์˜
  • ๊ณฑ์…ˆ์€ quaterion units $\mathbf{i}$, $\mathbf{j}$, $\mathbf{k}$์— ๋Œ€ํ•œ ๊ทœ์น™์— ๋”ฐ๋ผ ์‹œํ–‰

  • ๊ณฑ์…ˆ์— ๋Œ€ํ•œ ์—ญ์›: $\dfrac{w - x\mathbf{i} - y\mathbf{j} - z\mathbf{k}}{w^2 + x^2 + y^2 + z^2}$
  • ๊ณฑ์…ˆ์— ๋Œ€ํ•œ ํ•ญ๋“ฑ์›: $1 = (1, 0, 0 ,0)$
  • $q\cdot\bar{q} = w^2 + x^2 + y^2 + z^2$


โ€œQuaternion์€ 3์ฐจ์› ํšŒ์ „์—์„œ ์‚ฌ์šฉํ•œ๋‹ค!โ€



zero-divisor

Definition. zero-divisor

Let $R$ is a ring, for $a, b \in R$,

IF $ab=0$, THEN $a$ and $b$ is called a zero-divisor.


Example.

In $\mathbb{Z}_{12}$,

\[3 \cdot 4 \equiv 12 \equiv 0\]

๋”ฐ๋ผ์„œ $3$, $4$๋Š” $\mathbb{Z}_{12}$์—์„œ zero-divisor์ž„.



Theorem.

In $\mathbb{Z}_n$, the zero-divisors are precisely the elements which are not relatively prime to $n$.


proof.

Let non-zero $m \in \mathbb{Z}_n$ and $d:=(m, n) \ne 1$; ๊ณต์•ฝ์ˆ˜๊ฐ€ 1์ด ์•„๋‹Œ, ์ฆ‰ $n$๊ณผ ์„œ๋กœ์†Œ๊ฐ€ ์•„๋‹Œ $m$์„ ์„ ํƒํ•œ๋‹ค.

THEN,

\[m\left(\frac{n}{d}\right) = \left(\frac{m}{d}\right)n \equiv 0\]

์ฆ‰, $m$๊ณผ $\frac{n}{d}$๊ฐ€ zero-divisor๋‹ค. $\blacksquare$


Corollary.

IF $p$ is a prime, THEN $\mathbb{Z}_p$ has no zero-divisor.

proof.

$\mathbb{Z}_p$์˜ ์›์†Œ๋Š” ๋ชจ๋‘ $p$์™€ ์„œ๋กœ์†Œ์ด๋ฏ€๋กœ, zero-divisor๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค.



Theorem.

IF $p$ is a prime, THEN $\mathbb{Z}_p$ is a field.

์ฆ‰, ๋ชจ๋“  non-zero element๊ฐ€ multiplicative inverse๋ฅผ ๊ฐ€์ง„๋‹ค๋Š” ๋ง!!


proof.

Let non-zero $a\in\mathbb{Z}_p$, then $1 \le a \le p-1$.

Since $p$ is a prime, $(a, p) = 1$,

Bรฉzout's Identity์— ์˜ํ•ด, $ax + pq = 1$์ด ๋˜๋„๋ก ํ•˜๋Š” $x, y$๊ฐ€ ์กด์žฌํ•œ๋‹ค.

์œ„์˜ ์‹์—์„œ module $p$๋ฅผ ์ทจํ•˜๋ฉด,

\[\begin{aligned} ax + pq &= 1 \\ (ax + pq) \; (\textrm{mod } p) &\equiv 1 \\ ax \; (\textrm{mod } p) &\equiv 1 \\ \end{aligned}\]

์ด๋•Œ, $x$๊ฐ€ ๋ฐ”๋กœ $a$์˜ multiplicative inverse๋‹ค!

$\mathbb{Z}_p$์˜ ๋ชจ๋“  ์›์†Œ์— ๋Œ€ํ•ด multiplicative inverse๊ฐ€ ํ•ญ์ƒ ์กด์žฌํ•˜๋ฏ€๋กœ, $\mathbb{Z}_p$๋Š” division ring์ด๋‹ค.

$\mathbb{Z}_p$๋Š” commutative ring์ด๊ธฐ๋„ ํ•˜๋ฏ€๋กœ, $\mathbb{Z}_p$๋Š” field์ด๋‹ค. $\blacksquare$



Integral Domain

Definition. Integral Domain; ์ •์—ญ

An Integral Domain is a commutative ring with Unitiy, and without zero-divisors.


Example.

\[\mathbb{Z}, \quad \mathbb{Z}_p\]


Homework.

$\mathbb{Z}_n$ is an integral domain, IFF $n$ is prime.



Theorem. Bezoutโ€™s Identity

For $n, m \in \mathbb{Z}$,

1. if $(n, m) = 1$, then $\exists x, y \in \mathbb{Z}$ s.t. $nx + my = 1$.

2. if $(n, m) = d$, then $\exists x, y \in \mathbb{Z}$ s.t. $nx + my = d$.

proof.

2๋ฒˆ ๋ช…์ œ๋งŒ ์ฆ๋ช…ํ•ด๋ณด์ž.

$(n, m) = d$์ธ $n$, $m$๋ฅผ gcd์ธ $d$๋กœ ๋‚˜๋ˆ„์–ด ๋ณด์ž. ๊ทธ๋Ÿฌ๋ฉด

$\left( \frac{n}{d}, \frac{m}{d} \right) = 1$์ด ๋œ๋‹ค.

๋”ฐ๋ผ์„œ 1๋ฒˆ ๋ช…์ œ์— ์˜ํ•ด Bezoutโ€™s Identity๊ฐ€ ์กด์žฌํ•œ๋‹ค.

\[\frac{n}{d} x + \frac{m}{d} y = 1\]

์–‘๋ณ€์— $d$๋ฅผ ๊ณฑํ•˜๋ฉด

\[nx + my = d\]

์ธ ์‹์„ ์–ป๋Š”๋‹ค. $\blacksquare$



Definition. Characteristics of Ring; ํ™˜์˜ ํ‘œ์ˆ˜

If there exist $n \in \mathbb{N}$ s.t. $na \equiv 0$ ($a \in R$),

then call the smallest $n$ as a โ€œCharacteristic of a Ringโ€.

โ€ป If there is no such $n$, then we say Char- of a Ring = 0.


Example.

Char- of $\mathbb{Z}_{10}$ = 10;

($\textrm{Char}(\mathbb{Z}_{10}) = 10$)

Char- of $\mathbb{Z}$, $\mathbb{Q}$ = 0


Theorem.

Let $R$ be a ring with unity 1,

then $n \cdot 1 = 0 \iff n \cdot a = 0 \quad \forall \; a \in R$.

proof.

($\impliedby$) Clear

($\implies$) Supp. $n\cdot1 = 0$

Let $a \in R$,

\[\begin{aligned} n \cdot a &= n \cdot (1 \cdot a) \\ &= (n \cdot 1) \cdot a \\ &= 0 \cdot a \\ &= 0 \end{aligned}\]