2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

7 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

μš°λ¦¬κ°€ Group을 λΆ„λ₯˜ν–ˆλ“―이 Ring을 λΆ„λ₯˜ν•΄λ³΄μž!

Keyword.

  • Unity & unit
  • division ring
  • field & skew field
  • Quaternion
  • zero-divisor
  • Integral Domain; μ •μ—­

Definition. Zero ring

{0}

μ›μ†Œκ°€ ν•˜λ‚˜ 뿐인 Ring.


Definition. Unity & unit

Let R is a ring, THEN

  • Unity: a multiplicative identity.
  • unit: 곱에 λŒ€ν•œ 역원이 μ‘΄μž¬ν•˜λŠ” μ›μ†Œ


Example.

  • Zμ—μ„œ Unitiy: 1
  • Zμ—μ„œ unit: {1,βˆ’1}



Theorem.

If the multiplicative identity exist, it is unique.


proof.

β€œadditive identity의 μœ μΌμ„±β€ 증λͺ…κ³Ό λΉ„μŠ·ν•œ λ§₯락으둜 ν•˜λ©΄ 됨.


Example.

Zrs≅Zr×Zs is ring, IF (r,s)=1.

HW.

Ο•:Zrs⟢ZrΓ—Zsn⟼n(1,1)

THEN Ο• is a ring isomorphism.



Division RingPermalink

Definition. division ring

Let R be a ring with unity,

R is a division ring, IF every non-zero element has a mutliplicative inverse.

즉, Rβˆ–{0} is a group w.r.t. multiplication.


Field & skew-fieldPermalink

Definition. field & skew field

Division Ring이 곱에 λŒ€ν•΄ κ°€ν™˜μΈμ§€ 여뢀에 따라

  • Commutative division ring
    • Field
    • κ³±μ…ˆμ— λŒ€ν•΄ ꡰ을 μ΄λ£¨λ©΄μ„œ, 그것이 κ°€ν™˜κ΅°
  • non-Commutative division ring
    • skew Field
    • κ³±μ…ˆμ— λŒ€ν•΄ ꡰ을 μ΄λ£¨μ§€λ§Œ, κ°€ν™˜μ΄ μ•„λ‹˜


Example. 2Z

2Z is a commutative ring without unity.

μ™œλƒν•˜λ©΄, 1βˆ‰2ZλΌμ„œ


Example. Q

Q is a division ring, also commutative ring.

λ”°λΌμ„œ QλŠ” Fieldλ‹€!!

λ§ˆμ°¬κ°€μ§€λ‘œ R, C도 Fieldμž„!



QuternionPermalink

Example. quaternion set

The set of quaternions is a skew field.


Definition. Quaternion Q

Q={w+xi+yj+zk∣i2=j2=k2=ijk=βˆ’1}
  • λ§μ…ˆμ€ component-wise addition으둜 μ •μ˜
  • κ³±μ…ˆμ€ quaterion units i, j, k에 λŒ€ν•œ κ·œμΉ™μ— 따라 μ‹œν–‰

  • κ³±μ…ˆμ— λŒ€ν•œ 역원: wβˆ’xiβˆ’yjβˆ’zkw2+x2+y2+z2
  • κ³±μ…ˆμ— λŒ€ν•œ 항등원: 1=(1,0,0,0)
  • qβ‹…qΒ―=w2+x2+y2+z2


β€œQuaternion은 3차원 νšŒμ „μ—μ„œ μ‚¬μš©ν•œλ‹€!”



zero-divisorPermalink

Definition. zero-divisor

Let R is a ring, for a,b∈R,

IF ab=0, THEN a and b is called a zero-divisor.


Example.

In Z12,

3β‹…4≑12≑0

λ”°λΌμ„œ 3, 4λŠ” Z12μ—μ„œ zero-divisorμž„.



Theorem.

In Zn, the zero-divisors are precisely the elements which are not relatively prime to n.


proof.

Let non-zero m∈Zn and d:=(m,n)β‰ 1; κ³΅μ•½μˆ˜κ°€ 1이 μ•„λ‹Œ, 즉 nκ³Ό μ„œλ‘œμ†Œκ°€ μ•„λ‹Œ m을 μ„ νƒν•œλ‹€.

THEN,

m(nd)=(md)n≑0

즉, mκ³Ό ndκ°€ zero-divisorλ‹€. β—Ό


Corollary.

IF p is a prime, THEN Zp has no zero-divisor.

proof.

Zp의 μ›μ†ŒλŠ” λͺ¨λ‘ p와 μ„œλ‘œμ†Œμ΄λ―€λ‘œ, zero-divisorκ°€ μ‘΄μž¬ν•˜μ§€ μ•ŠλŠ”λ‹€.



Theorem.

IF p is a prime, THEN Zp is a field.

즉, λͺ¨λ“  non-zero elementκ°€ multiplicative inverseλ₯Ό κ°€μ§„λ‹€λŠ” 말!!


proof.

Let non-zero a∈Zp, then 1≀a≀pβˆ’1.

Since p is a prime, (a,p)=1,

BΓ©zout's Identity에 μ˜ν•΄, ax+pq=1이 λ˜λ„λ‘ ν•˜λŠ” x,yκ°€ μ‘΄μž¬ν•œλ‹€.

μœ„μ˜ μ‹μ—μ„œ module pλ₯Ό μ·¨ν•˜λ©΄,

ax+pq=1(ax+pq)(mod p)≑1ax(mod p)≑1

μ΄λ•Œ, xκ°€ λ°”λ‘œ a의 multiplicative inverseλ‹€!

Zp의 λͺ¨λ“  μ›μ†Œμ— λŒ€ν•΄ multiplicative inverseκ°€ 항상 μ‘΄μž¬ν•˜λ―€λ‘œ, ZpλŠ” division ring이닀.

ZpλŠ” commutative ring이기도 ν•˜λ―€λ‘œ, ZpλŠ” field이닀. β—Ό



Integral DomainPermalink

Definition. Integral Domain; μ •μ—­

An Integral Domain is a commutative ring with Unitiy, and without zero-divisors.


Example.

Z,Zp


Homework.

Zn is an integral domain, IFF n is prime.



Theorem. Bezout’s Identity

For n,m∈Z,

1. if (n,m)=1, then βˆƒx,y∈Z s.t. nx+my=1.

2. if (n,m)=d, then βˆƒx,y∈Z s.t. nx+my=d.

proof.

2번 λͺ…μ œλ§Œ 증λͺ…ν•΄λ³΄μž.

(n,m)=d인 n, mλ₯Ό gcd인 d둜 λ‚˜λˆ„μ–΄ 보자. 그러면

(nd,md)=1이 λœλ‹€.

λ”°λΌμ„œ 1번 λͺ…μ œμ— μ˜ν•΄ Bezout’s Identityκ°€ μ‘΄μž¬ν•œλ‹€.

ndx+mdy=1

양변에 dλ₯Ό κ³±ν•˜λ©΄

nx+my=d

인 식을 μ–»λŠ”λ‹€. β—Ό



Definition. Characteristics of Ring; ν™˜μ˜ ν‘œμˆ˜

If there exist n∈N s.t. na≑0 (a∈R),

then call the smallest n as a β€œCharacteristic of a Ring”.

β€» If there is no such n, then we say Char- of a Ring = 0.


Example.

Char- of Z10 = 10;

(Char(Z10)=10)

Char- of Z, Q = 0


Theorem.

Let R be a ring with unity 1,

then nβ‹…1=0⟺nβ‹…a=0βˆ€a∈R.

proof.

(⟸) Clear

(⟹) Supp. nβ‹…1=0

Let a∈R,

nβ‹…a=nβ‹…(1β‹…a)=(nβ‹…1)β‹…a=0β‹…a=0