Ring - 2
2020-2ํ๊ธฐ, ๋ํ์์ โํ๋๋์1โ ์์ ์ ๋ฃ๊ณ ๊ณต๋ถํ ๋ฐ๋ฅผ ์ ๋ฆฌํ ๊ธ์ ๋๋ค. ์ง์ ์ ์ธ์ ๋ ํ์์ ๋๋ค :)
์ฐ๋ฆฌ๊ฐ Group์ ๋ถ๋ฅํ๋ฏ์ด Ring์ ๋ถ๋ฅํด๋ณด์!
Keyword.
- Unity & unit
- division ring
- field & skew field
- Quaternion
- zero-divisor
- Integral Domain; ์ ์ญ
Definition. Zero ring
์์๊ฐ ํ๋ ๋ฟ์ธ Ring.
Definition. Unity & unit
Let $R$ is a ring, THEN
- Unity: a multiplicative identity.
- unit: ๊ณฑ์ ๋ํ ์ญ์์ด ์กด์ฌํ๋ ์์
Example.
- $\mathbb{Z}$์์ Unitiy: $1$
- $\mathbb{Z}$์์ unit: $\{1, -1\}$
Theorem.
If the multiplicative identity exist, it is unique.
proof.
โadditive identity์ ์ ์ผ์ฑโ ์ฆ๋ช ๊ณผ ๋น์ทํ ๋งฅ๋ฝ์ผ๋ก ํ๋ฉด ๋จ.
Example.
$\mathbb{Z}_{rs} \cong \mathbb{Z}_r \times \mathbb{Z}_s$ is ring, IF $(r, s) = 1$.
HW.
THEN $\phi$ is a ring isomorphism.
Division Ring
Definition. division ring
Let $R$ be a ring with unity,
$R$ is a division ring, IF every non-zero element has a mutliplicative inverse.
์ฆ, $R\setminus\{0\}$ is a group w.r.t. multiplication.
Field & skew-field
Definition. field & skew field
Division Ring์ด ๊ณฑ์ ๋ํด ๊ฐํ์ธ์ง ์ฌ๋ถ์ ๋ฐ๋ผ
- Commutative division ring
- Field
- ๊ณฑ์ ์ ๋ํด ๊ตฐ์ ์ด๋ฃจ๋ฉด์, ๊ทธ๊ฒ์ด ๊ฐํ๊ตฐ
- non-Commutative division ring
- skew Field
- ๊ณฑ์ ์ ๋ํด ๊ตฐ์ ์ด๋ฃจ์ง๋ง, ๊ฐํ์ด ์๋
Example. $2\mathbb{Z}$
$2\mathbb{Z}$ is a commutative ring without unity.
์๋ํ๋ฉด, $1\notin 2\mathbb{Z}$๋ผ์
Example. $\mathbb{Q}$
$\mathbb{Q}$ is a division ring, also commutative ring.
๋ฐ๋ผ์ $\mathbb{Q}$๋ Field๋ค!!
๋ง์ฐฌ๊ฐ์ง๋ก $\mathbb{R}$, $\mathbb{C}$๋ Field์!
Quternion
Example. quaternion set
The set of quaternions is a skew field.
Definition. Quaternion $Q$
- ๋ง์ ์ component-wise addition์ผ๋ก ์ ์
-
๊ณฑ์ ์ quaterion units $\mathbf{i}$, $\mathbf{j}$, $\mathbf{k}$์ ๋ํ ๊ท์น์ ๋ฐ๋ผ ์ํ
- ๊ณฑ์ ์ ๋ํ ์ญ์: $\dfrac{w - x\mathbf{i} - y\mathbf{j} - z\mathbf{k}}{w^2 + x^2 + y^2 + z^2}$
- ๊ณฑ์ ์ ๋ํ ํญ๋ฑ์: $1 = (1, 0, 0 ,0)$
- $q\cdot\bar{q} = w^2 + x^2 + y^2 + z^2$
โQuaternion์ 3์ฐจ์ ํ์ ์์ ์ฌ์ฉํ๋ค!โ
zero-divisor
Definition. zero-divisor
Let $R$ is a ring, for $a, b \in R$,
IF $ab=0$, THEN $a$ and $b$ is called a zero-divisor.
Example.
In $\mathbb{Z}_{12}$,
\[3 \cdot 4 \equiv 12 \equiv 0\]๋ฐ๋ผ์ $3$, $4$๋ $\mathbb{Z}_{12}$์์ zero-divisor์.
Theorem.
In $\mathbb{Z}_n$, the zero-divisors are precisely the elements which are not relatively prime to $n$.
proof.
Let non-zero $m \in \mathbb{Z}_n$ and $d:=(m, n) \ne 1$; ๊ณต์ฝ์๊ฐ 1์ด ์๋, ์ฆ $n$๊ณผ ์๋ก์๊ฐ ์๋ $m$์ ์ ํํ๋ค.
THEN,
\[m\left(\frac{n}{d}\right) = \left(\frac{m}{d}\right)n \equiv 0\]์ฆ, $m$๊ณผ $\frac{n}{d}$๊ฐ zero-divisor๋ค. $\blacksquare$
Corollary.
IF $p$ is a prime, THEN $\mathbb{Z}_p$ has no zero-divisor.
proof.
$\mathbb{Z}_p$์ ์์๋ ๋ชจ๋ $p$์ ์๋ก์์ด๋ฏ๋ก, zero-divisor๊ฐ ์กด์ฌํ์ง ์๋๋ค.
Theorem.
IF $p$ is a prime, THEN $\mathbb{Z}_p$ is a field.
์ฆ, ๋ชจ๋ non-zero element๊ฐ multiplicative inverse๋ฅผ ๊ฐ์ง๋ค๋ ๋ง!!
proof.
Let non-zero $a\in\mathbb{Z}_p$, then $1 \le a \le p-1$.
Since $p$ is a prime, $(a, p) = 1$,
Bรฉzout's Identity์ ์ํด, $ax + pq = 1$์ด ๋๋๋ก ํ๋ $x, y$๊ฐ ์กด์ฌํ๋ค.
์์ ์์์ module $p$๋ฅผ ์ทจํ๋ฉด,
\[\begin{aligned} ax + pq &= 1 \\ (ax + pq) \; (\textrm{mod } p) &\equiv 1 \\ ax \; (\textrm{mod } p) &\equiv 1 \\ \end{aligned}\]์ด๋, $x$๊ฐ ๋ฐ๋ก $a$์ multiplicative inverse๋ค!
$\mathbb{Z}_p$์ ๋ชจ๋ ์์์ ๋ํด multiplicative inverse๊ฐ ํญ์ ์กด์ฌํ๋ฏ๋ก, $\mathbb{Z}_p$๋ division ring์ด๋ค.
$\mathbb{Z}_p$๋ commutative ring์ด๊ธฐ๋ ํ๋ฏ๋ก, $\mathbb{Z}_p$๋ field์ด๋ค. $\blacksquare$
Integral Domain
Definition. Integral Domain; ์ ์ญ
An Integral Domain is a commutative ring with Unitiy, and without zero-divisors.
Example.
Homework.
$\mathbb{Z}_n$ is an integral domain, IFF $n$ is prime.
Theorem. Bezoutโs Identity
For $n, m \in \mathbb{Z}$,
1. if $(n, m) = 1$, then $\exists x, y \in \mathbb{Z}$ s.t. $nx + my = 1$.
2. if $(n, m) = d$, then $\exists x, y \in \mathbb{Z}$ s.t. $nx + my = d$.
proof.
2๋ฒ ๋ช ์ ๋ง ์ฆ๋ช ํด๋ณด์.
$(n, m) = d$์ธ $n$, $m$๋ฅผ gcd์ธ $d$๋ก ๋๋์ด ๋ณด์. ๊ทธ๋ฌ๋ฉด
$\left( \frac{n}{d}, \frac{m}{d} \right) = 1$์ด ๋๋ค.
๋ฐ๋ผ์ 1๋ฒ ๋ช ์ ์ ์ํด Bezoutโs Identity๊ฐ ์กด์ฌํ๋ค.
\[\frac{n}{d} x + \frac{m}{d} y = 1\]์๋ณ์ $d$๋ฅผ ๊ณฑํ๋ฉด
\[nx + my = d\]์ธ ์์ ์ป๋๋ค. $\blacksquare$
Definition. Characteristics of Ring; ํ์ ํ์
If there exist $n \in \mathbb{N}$ s.t. $na \equiv 0$ ($a \in R$),
then call the smallest $n$ as a โCharacteristic of a Ringโ.
โป If there is no such $n$, then we say Char- of a Ring = 0.
Example.
Char- of $\mathbb{Z}_{10}$ = 10;
($\textrm{Char}(\mathbb{Z}_{10}) = 10$)
Char- of $\mathbb{Z}$, $\mathbb{Q}$ = 0
Theorem.
Let $R$ be a ring with unity 1,
then $n \cdot 1 = 0 \iff n \cdot a = 0 \quad \forall \; a \in R$.
proof.
($\impliedby$) Clear
($\implies$) Supp. $n\cdot1 = 0$
Let $a \in R$,
\[\begin{aligned} n \cdot a &= n \cdot (1 \cdot a) \\ &= (n \cdot 1) \cdot a \\ &= 0 \cdot a \\ &= 0 \end{aligned}\]