2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

6 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

Keyword.

  • Integral Domain; ์ •์—ญ
  • a field is an integral domain

Corollary.

IF $p$ is prime, THEN $\mathbb{Z}_p$ has no zero-divisor.

$\mathbb{Z}_n$์˜ zero-divisor๋Š” $(n, m) \ne 1$์ด์–ด์•ผ ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ!


Theorem.

The cancellation law holds in a ring $R$, IFF $R$ has no zero-divisor.


proof.

($\implies$)

Supp. the cancellation law holds, and supp. $ab=0$ for some $a, b \in R$.

To show $a=0$ or $b=0$; (์™œ๋ƒํ•˜๋ฉด, zero-divisor๋Š” $a\ne0$ and $b\ne0$์ด๋ฉด์„œ $ab=0$์ด๊ธฐ ๋•Œ๋ฌธ!)

w.o.l.g. supp. $a\ne0$, THEN

\[\begin{aligned} ab &= 0 \\ ab &= 0 = a \cdot 0 \\ ab &= a \cdot 0 \end{aligned}\]

$ab = a \cdot 0$์—์„œ cancellation law๋ฅผ ์ ์šฉํ•˜๋ฉด, $b=0$๋ผ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

๋ฐ˜๋Œ€๋กœ $b\ne0$๋ฅผ ๊ฐ€์ •ํ•˜๋ฉด, $a=0$๋ผ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

๋”ฐ๋ผ์„œ $ab=0$์ด๋ผ๋ฉด, $a=0$ or $b=0$์ด๋ฏ€๋กœ, zero-divisor๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. $\blacksquare$

($\impliedby$)

Supp. $R$ has no zero-divisors, and supp. $xy=xz$ , $x\ne0$ for some $x, y, z \in R$

\[\begin{aligned} xy &= xz \\ xy - xz &= 0 \\ x(y-z) &= 0 \end{aligned}\]

์ด๋•Œ $R$์€ zero-divisor๋ฅผ ๊ฐ€์ง€์ง€ ์•Š์œผ๋ฏ€๋กœ, $y-z=0$์ด๋‹ค. ๋”ฐ๋ผ์„œ $y=z$์ด๋‹ค.

์ด์— ๋”ฐ๋ผ non-zero$x$์— ๋Œ€ํ•ด $xy=xz$๋ผ๋ฉด, $y=z$๋ผ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๊ณ , ์ด๊ฒƒ์€ cancellation law๋ฅผ ์˜๋ฏธํ•œ๋‹ค. $\blacksquare$


review. Integral Domain; ์ •์—ญ

An Integral Domain is a commutative ring with Unitiy, and without zero-divisors.


Note.

Integral domain์—๋Š” ์ ์–ด๋„ 2๊ฐœ์˜ ์›์†Œ๋Š” ์žˆ์–ด์•ผ ํ•œ๋‹ค.

(์™œ๋ƒํ•˜๋ฉด, ๋ง์…ˆ์˜ ํ•ญ๋“ฑ์› $0$๊ณผ ๊ณฑ์…ˆ์˜ ํ•ญ๋“ฑ์› $1$์€ ๊ฐ™์„ ์ˆ˜๊ฐ€ ์—†๊ธฐ ๋•Œ๋ฌธ!)


์•ž์œผ๋กœ ํ‘œ๊ธฐ์˜ ํŽธ์˜๋ฅผ ์œ„ํ•ด โ€œIntegral domainโ€์„ ๋ชจ๋‘ โ€œdomainโ€์œผ๋กœ ๊ฐ„๋žตํžˆ ํ‘œ๊ธฐํ•˜๊ฒ ๋‹ค.

Example.

Let $R$, $S$ be rings, $R \times S$ is not a domain, IF $R\ne\{0\}$ and $S\ne\{0\}$; ๋‘˜๋‹ค zero ring์ด ์•„๋‹ˆ๋ผ๋ฉด, $R\times S$๋Š” domain์ด ๋  ์ˆ˜ ์—†๋‹ค.

proof.

$R$์™€ $S$ ๋‘˜๋‹ค zero ring์ด ์•„๋‹ˆ๋ฏ€๋กœ, $R$, $S$์—์„œ ๊ฐ๊ฐ non-zero ์›์†Œ๋ฅผ ๋ฝ‘์„ ์ˆ˜ ์žˆ๋‹ค.

$r\ne\in R$, $s\ne\in S$

$\implies$ $(r, 0)(0, s) = (0, 0)$

์ฆ‰, $(r, 0)$, $(s, 0)$์ด zero-divisor๊ฐ€ ๋˜๋ฏ€๋กœ, domain์ด ๋  ์ˆ˜ ์—†๋‹ค.



review. field & skew field

Division Ring์ด ๊ณฑ์— ๋Œ€ํ•ด ๊ฐ€ํ™˜์ธ์ง€ ์—ฌ๋ถ€์— ๋”ฐ๋ผ

  • Commutative division ring
    • Field
    • ๊ณฑ์…ˆ์— ๋Œ€ํ•ด ๊ตฐ์„ ์ด๋ฃจ๋ฉด์„œ, ๊ทธ๊ฒƒ์ด ๊ฐ€ํ™˜๊ตฐ
  • non-Commutative division ring
    • skew Field
    • ๊ณฑ์…ˆ์— ๋Œ€ํ•ด ๊ตฐ์„ ์ด๋ฃจ์ง€๋งŒ, ๊ฐ€ํ™˜์ด ์•„๋‹˜


Claim.

A field is an integral domain s.t. every non-zero elts has the multiplicative inverse in it.


Field $\implies$ Integral Domain

Theorem.

Every field is an integral domain.


proof.

Field $F$์— zero-divisor๊ฐ€ ์—†์Œ์„ ๋ณด์ด๋ฉด ๋œ๋‹ค.

Supp. $a\ne0$, $ab=0$ for some $a, b \in F$

Field์ด๋ฏ€๋กœ non-zero ์›์†Œ๋Š” ๊ณฑ์— ๋Œ€ํ•œ ์—ญ์›์ด ํ•ญ์ƒ ์กด์žฌํ•œ๋‹ค.

\[\begin{aligned} ab &= 0 \\ a^{-1}(ab) &= 0 \\ 1 \cdot b &= 0 \\ b &= 0 \end{aligned}\]

๋”ฐ๋ผ์„œ $b=0$์ด๋‹ค.

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $b\ne0$๋ผ๋ฉด, $a=0$์ด๋‹ค.

๋”ฐ๋ผ์„œ $ab=0$์— ๋Œ€ํ•ด $a=0$ ๋˜๋Š” $b=0$์ด๋ฏ€๋กœ Field $F$์—๋Š” zero-divisor๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. $\blacksquare$



Finite Integral Domain $\implies$ Field

Theorem.

Every finite integral domain is a field.


proof.

Let $D$ be a finite domain.

Say $D = \{0, d_1, d_2, \cdots, d_n\} \quad (d_i \ne 0)$.


We will show each $d_i$ has a multiplicative inverse.

Define $D^{*} = D \setminus \{0\}$

THEN,

\[d_i D^{*} = \{d_i d \mid d \in D^{*}\}\]

Think of a size of $\lvert d_i D^{*} \rvert$.

To show $\lvert d_i D^{*} \rvert = \lvert D^{*} \rvert$, we will show

\[d_i d_j = d_i d_k \iff d_j = d_k\]

๋ฐ”๋กœ ์œ„์˜ ๋ช…์ œ๊ฐ€ ๋งํ•˜๋Š” ๋ฐ”๋Š”, $d_j$์™€ $d_k$๊ฐ€ ๋‹ค๋ฅด๋‹ค๋ฉด, $d_i$์™€์˜ ๊ณฑ์€ ํ•ญ์ƒ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ์ด๋‹ค!

์ด ๋ช…์ œ๋ฅผ ์ฆ๋ช…ํ•˜์ž.

\[\begin{aligned} d_i d_j - d_i d_k &= 0 \\ d_i (d_j - d_k) &= 0 \\ d_j - d_k &= 0 \\ d_j &= d_k \end{aligned}\]

์œ„์˜ ๊ณผ์ •์—์„œ Integral domain์˜ ๊ฒฝ์šฐ, zero-divisor๊ฐ€ ์—†๋‹ค๋Š” ์‚ฌ์‹ค์„ ์‚ฌ์šฉํ–ˆ๋‹ค.


์œ„์˜ ๋ช…์ œ์— ๋”ฐ๋ผ $dD^{*}$์˜ ๋ชจ๋“  ์›์†Œ๋Š” ์„œ๋กœ ๋‹ค๋ฆ„์ด ๋ณด์žฅ๋œ๋‹ค.

๋”ฐ๋ผ์„œ $\lvert d_i D^{*} \rvert = \lvert D^{*} \rvert = n$์ด๋‹ค!


์ด๋•Œ, $d_i D^{*} \subseteq D^{*}$์ด๋‹ค.

๊ทธ๋Ÿฐ๋ฐ, ๋ถ€๋ถ„์ง‘ํ•ฉ์˜ ํฌ๊ธฐ๊ฐ€ ์›๋ž˜ ์ง‘ํ•ฉ์˜ ํฌ๊ธฐ์™€ ๊ฐ™๊ธฐ ๋•Œ๋ฌธ์— $d_i D^{*} = D^{*}$์ด ์„ฑ๋ฆฝํ•œ๋‹ค.


์ด๋•Œ $1 \in D^{*}$์ด๋ฏ€๋กœ $1 \in d_i D^{*}$์ด๋‹ค.

์ด์— ๋”ฐ๋ผ $1 = d_i d_j$ for some $d_j \in D^{*}$์ด๋‹ค.

์ฆ‰, $d_j$๊ฐ€ $d_i$์˜ multiplicative inverse์ด๋‹ค!


๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋‚˜๋จธ์ง€ non-zero $d_i \in D$์— ๋Œ€ํ•ด ๋™์ผํ•˜๊ฒŒ ์‹œํ–‰ํ•˜๋ฉด, ๋ชจ๋“  $d_i$๊ฐ€ multiplicative inverse๋ฅผ ๊ฐ€์ง์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

$D$์˜ ๋ชจ๋“  ์›์†Œ๊ฐ€ multiplicative inverse๋ฅผ ๊ฐ€์ง€๋ฏ€๋กœ, $D$๋Š” field๋‹ค. $\blacksquare$



Corollary.

$\mathbb{Z}_n$ is a field, IF $n$ is a prime.

์•ž์—์„œ๋Š” $n=p$ ์†Œ์ˆ˜์ผ ๋•Œ, $\mathbb{Z}_n$์ด Integral domain์ด ๋จ์„ ๋ณด์˜€๋‹ค.

์ฆ‰, ์šฐ๋ฆฌ๊ฐ€ ์•ž์—์„œ ๋ชจ๋“  Finite integral domain์€ field๊ฐ€ ๋จ์„ ๋ณด์˜€์œผ๋‹ˆ ์•ž์—์„œ ๋ณด์ธ ๋ช…์ œ์™€ ๊ฒฐํ•ฉํ•ด ์œ„์˜ ๋ช…์ œ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.