Linear Transform
2020-2νκΈ°, λνμμ βμμ©λ³΅μν¨μλ‘ β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Linear Transformation
\[w = Az + B \quad (A \ne 0)\]μμ κ°μ ννμ λ³νμ Linear Transformμ΄λΌκ³ νλ€.
볡μ μμμμ Linear Transformμ΄ μ΄λ»κ² νλνλμ§ μΌμ΄μ€ λ³λ‘ μ΄ν΄λ³΄μ.
(1) $B=0$
\[w = Az \quad (A \ne 0)\]$A = a \cdot e^{i\alpha}$, $z = r \cdot e^{i\theta}$λΌκ³ λλ©΄, $w$λ $w = (ar) \cdot e^{i(\theta + \alpha)}$κ° λλ€.
- κ°λ $\alpha$ λ§νΌ Domainμ΄ νμ μ΄λ
- $a = \lvert A \rvert$ λ§νΌ μμΆ/ν½μ°½
(2) $A=1$
\[w = z + B\]- $B$ λ§νΌ νν μ΄λ
(3) General form
\[w = Az + B\](1), (2)μ μν©μ΄ ν©μ±λ μν©μΌλ‘ μ΄ν΄ν μ μλ€.
\[z \longrightarrow Az \longrightarrow Az + B\]Image of Linear transform; Square Domain
The image of the set $\{ x + ig : 0 \le x \le 1, \; 0 \le y \le 2 \}$ under the map
\[w = (1+i)z + 2\]transform $w$λ₯Ό λ λ¨κ³λ‘ λλμ΄ μ€μνμ.
- $w_1 = (1+i)z$
- $w_2 = w_1 + 2$
Inversion mapping; $w = \frac{1}{z}$
Write $z = r \cdot e^{i\theta}$, THEN $w = \frac{1}{r} \cdot e^{-i\theta}$
inversion mapping $w = \frac{1}{z}$λ $z$λ₯Ό x-μΆμΌλ‘ λ°μ μν€κ³ , κΈΈμ΄λ₯Ό μμΆ/ν½μ°½μν¨λ€.
$\frac{1}{r}$μ μ·¨νκΈ° λλ¬Έμ 볡μμ $z$κ° μμ $O$μ κ°κΉμμ§ μλ‘ imageκ° λ°μ°νλ€.
Extended complex plane; $\mathbb{C} \cup \{ \infty \}$
Transform $T(z)$λ₯Ό niceνκ² μ μνκΈ° μν΄μ $\{ \infty \}$λ₯Ό μΆκ°ν΄ μ΄λ―Έμ§ μμμ νμ₯μν¨λ€.
Picture from link
μλ $T(z)$λ $0$μμ κ°μ΄ μ μλμ§ μλλ€. κ·Έλ°λ° Extended complex planeμ μκ°ν΄μ $T(0) = \infty$λ‘ κ°μ λΆμ¬νλ κ²μ΄λ€. μ¦, $\infty$λΌλ ν μ μ μΆκ°ν΄ Image spaceλ₯Ό $\mathbb{C}$μμ $\mathbb{C} \cup \{ \infty \}$λ‘ νμ₯νλ€λ©΄, $T(z)$λ₯Ό $z=0$μμκΉμ§ continuousνκ² λ§λ€ μ μλ€.
\[\lim_{z \rightarrow 0} {T(z)} = \infty = T(0)\]μ΄λ₯Ό ν΅ν΄ $T(z)$λ₯Ό 볡μνλ©΄ μ 체μμ continuousνκ² μ μν μ μλ€.
Images of inversion mapping
(1) $x=c$ under $w = \frac{1}{z}$
λ°λΌμ μ§μ $x=c$λ w-planeμ μμΌλ‘ 맀νλλ€.
(2) $\{ x + iy : x \ge c \}$ under $w = \frac{1}{z}$
Statement.
μΌλ°μ μΌλ‘ circleκ³Ό lineμ μλμ μμΌλ‘ ννλλ€.
\[A(x^2 + y^2) + Bx + Cy + D = 0 \quad (B^2 + C^2 > 4 AD)\]* line
$A=0$: $Bx + Cy + D = 0$
* circle
$A \ne 0$: $\left(x + \frac{B}{2A}\right)^2 + \left( y + \frac{C}{2A}\right)^2 = \left(\frac{\sqrt{B^2 + C^2 - 4 AD}}{2A}\right)^2$
μ΄λ, μ°λ¦¬κ° $(x, y)$μ $(u, v)$μ λν κ΄κ³μμ μκ³ μμΌλ, $(x, y)$μ λν μμ μμ $(u, v)$μ λν μμΌλ‘ λ°κΏ μ μλ€!
\[\begin{aligned} w &= u + iv \\ z &= x + iy = \frac{1}{u + iv} = \frac{u}{u^2 + v^2} - i \frac{v}{u^2 + v^2} \end{aligned}\]μμ κ΄κ³μμΌλ‘λΆν°
(1) $x = \dfrac{u}{u^2 + v^2}$, $y = -\dfrac{v}{u^2 + v^2}$
(2) $x^2 + y^2 = \dfrac{1}{u^2 + v^2}$
λ₯Ό μ λν μ μκ³ ,
\[\begin{aligned} A(x^2 + y^2) + Bx + Cy + D &= 0 \quad (B^2 + C^2 > 4 AD) \\ A\left(\frac{1}{u^2 + v^2}\right) + B\left(\frac{u}{u^2 + v^2}\right) + C\left(-\frac{v}{u^2 + v^2}\right) + D &= 0 \\ D(u^2 + v^2) + Bu + C(-v) + A &= 0 \end{aligned}\]λ°λΌμ inversion mapping $w = \frac{1}{z}$μ λν Imageλ line λλ circleμ΄ λλ€.
$A$, $D$μ λ°λ₯Έ κ²½μ°λ₯Ό νλ‘ λΆλ₯νλ©΄ μλμ κ°λ€.
-
μ°Έκ³ λ‘ μ΄λ° Extended Complex Planeμ βRiemann SphereβλΌκ³ λ νλ€. μ΄ Sphereλ₯Ό μ¬μ©νλ©΄, 볡μνλ©΄ μμ λͺ¨λ μ μ ꡬμ νλ©΄μ 맀νμν¬ μ μλ€!Β ↩