2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

6 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


Linear Transformation

\[w = Az + B \quad (A \ne 0)\]

μœ„μ™€ 같은 ν˜•νƒœμ˜ λ³€ν™˜μ€ Linear Transform이라고 ν•œλ‹€.

λ³΅μ†Œ μ˜μ—­μ—μ„œ Linear Transform이 μ–΄λ–»κ²Œ ν–‰λ™ν•˜λŠ”μ§€ μΌ€μ΄μŠ€ λ³„λ‘œ μ‚΄νŽ΄λ³΄μž.


(1) $B=0$

\[w = Az \quad (A \ne 0)\]

$A = a \cdot e^{i\alpha}$, $z = r \cdot e^{i\theta}$라고 두면, $w$λŠ” $w = (ar) \cdot e^{i(\theta + \alpha)}$κ°€ λœλ‹€.

  • 각도 $\alpha$ 만큼 Domain이 νšŒμ „ 이동
  • $a = \lvert A \rvert$ 만큼 μˆ˜μΆ•/팽창

(2) $A=1$

\[w = z + B\]
  • $B$ 만큼 평행 이동

(3) General form

\[w = Az + B\]

(1), (2)의 상황이 ν•©μ„±λœ μƒν™©μœΌλ‘œ 이해할 수 μžˆλ‹€.

\[z \longrightarrow Az \longrightarrow Az + B\]

Image of Linear transform; Square Domain

The image of the set $\{ x + ig : 0 \le x \le 1, \; 0 \le y \le 2 \}$ under the map

\[w = (1+i)z + 2\]

transform $w$λ₯Ό 두 λ‹¨κ³„λ‘œ λ‚˜λˆ„μ–΄ μ‹€μ‹œν•˜μž.

  1. $w_1 = (1+i)z$
  2. $w_2 = w_1 + 2$

Inversion mapping; $w = \frac{1}{z}$

Write $z = r \cdot e^{i\theta}$, THEN $w = \frac{1}{r} \cdot e^{-i\theta}$

inversion mapping $w = \frac{1}{z}$λŠ” $z$λ₯Ό x-μΆ•μœΌλ‘œ λ°˜μ „μ‹œν‚€κ³ , 길이λ₯Ό μˆ˜μΆ•/νŒ½μ°½μ‹œν‚¨λ‹€.

$\frac{1}{r}$을 μ·¨ν•˜κΈ° λ•Œλ¬Έμ— λ³΅μ†Œμˆ˜ $z$κ°€ 원점 $O$에 κ°€κΉŒμ›Œμ§ˆ 수둝 imageκ°€ λ°œμ‚°ν•œλ‹€.

Extended complex plane; $\mathbb{C} \cup \{ \infty \}$

Transform $T(z)$λ₯Ό niceν•˜κ²Œ μ •μ˜ν•˜κΈ° μœ„ν•΄μ„œ $\{ \infty \}$λ₯Ό μΆ”κ°€ν•΄ 이미지 μ˜μ—­μ„ ν™•μž₯μ‹œν‚¨λ‹€.

For a transform $T(z) = \frac{1}{z}$, Let $T(0) = \infty$ and $T(\infty) = 0$, THEN $T$ is continuous.

Picture from link

1

μ›λž˜ $T(z)$λŠ” $0$μ—μ„œ 값이 μ •μ˜λ˜μ§€ μ•ŠλŠ”λ‹€. 그런데 Extended complex plane을 μƒκ°ν•΄μ„œ $T(0) = \infty$둜 값을 λΆ€μ—¬ν•˜λŠ” 것이닀. 즉, $\infty$λΌλŠ” ν•œ 점을 μΆ”κ°€ν•΄ Image spaceλ₯Ό $\mathbb{C}$μ—μ„œ $\mathbb{C} \cup \{ \infty \}$둜 ν™•μž₯ν•œλ‹€λ©΄, $T(z)$λ₯Ό $z=0$μ—μ„œκΉŒμ§€ continuousν•˜κ²Œ λ§Œλ“€ 수 μžˆλ‹€.

\[\lim_{z \rightarrow 0} {T(z)} = \infty = T(0)\]

이λ₯Ό 톡해 $T(z)$λ₯Ό λ³΅μ†Œν‰λ©΄ μ „μ²΄μ—μ„œ continuousν•˜κ²Œ μ •μ˜ν•  수 μžˆλ‹€.


Images of inversion mapping

(1) $x=c$ under $w = \frac{1}{z}$

\[\begin{aligned} w &= u + i v = \frac{1}{x + iy} \\ z &= x + iy = \frac{1}{u + iy} = \frac{u}{u^2 + v^2} - i \frac{v}{u^2 + v^2} \end{aligned}\] \[\begin{aligned} x = \frac{u}{u^2 + v^2} &= c \\ c(u^2 + v^2) - u &= 0 \\ u^2 + v^2 - \frac{1}{c} u &= 0 \\ \left(u - \frac{1}{2c}\right)^2 + v^2 &= \left( \frac{1}{2c} \right)^2 \end{aligned}\]

λ”°λΌμ„œ 직선 $x=c$λŠ” w-plane에 μ›μœΌλ‘œ λ§€ν•‘λœλ‹€.

(2) $\{ x + iy : x \ge c \}$ under $w = \frac{1}{z}$


Statement.

$w=\frac{1}{z}$ transforms (circles and lines) into (circles and lines).

일반적으둜 circleκ³Ό line은 μ•„λž˜μ˜ μ‹μœΌλ‘œ ν‘œν˜„λœλ‹€.

\[A(x^2 + y^2) + Bx + Cy + D = 0 \quad (B^2 + C^2 > 4 AD)\]

* line
$A=0$: $Bx + Cy + D = 0$

* circle
$A \ne 0$: $\left(x + \frac{B}{2A}\right)^2 + \left( y + \frac{C}{2A}\right)^2 = \left(\frac{\sqrt{B^2 + C^2 - 4 AD}}{2A}\right)^2$

μ΄λ•Œ, μš°λ¦¬κ°€ $(x, y)$와 $(u, v)$에 λŒ€ν•œ 관계식을 μ•Œκ³  μžˆμœΌλ‹ˆ, $(x, y)$에 λŒ€ν•œ μœ„μ˜ 식을 $(u, v)$에 λŒ€ν•œ μ‹μœΌλ‘œ λ°”κΏ€ 수 μžˆλ‹€!

\[\begin{aligned} w &= u + iv \\ z &= x + iy = \frac{1}{u + iv} = \frac{u}{u^2 + v^2} - i \frac{v}{u^2 + v^2} \end{aligned}\]

μœ„μ˜ κ΄€κ³„μ‹μœΌλ‘œλΆ€ν„°

(1) $x = \dfrac{u}{u^2 + v^2}$, $y = -\dfrac{v}{u^2 + v^2}$

(2) $x^2 + y^2 = \dfrac{1}{u^2 + v^2}$

λ₯Ό μœ λ„ν•  수 있고,

\[\begin{aligned} A(x^2 + y^2) + Bx + Cy + D &= 0 \quad (B^2 + C^2 > 4 AD) \\ A\left(\frac{1}{u^2 + v^2}\right) + B\left(\frac{u}{u^2 + v^2}\right) + C\left(-\frac{v}{u^2 + v^2}\right) + D &= 0 \\ D(u^2 + v^2) + Bu + C(-v) + A &= 0 \end{aligned}\]

λ”°λΌμ„œ inversion mapping $w = \frac{1}{z}$에 λŒ€ν•œ ImageλŠ” line λ˜λŠ” circle이 λœλ‹€.


$A$, $D$에 λ”°λ₯Έ 경우λ₯Ό ν‘œλ‘œ λΆ„λ₯˜ν•˜λ©΄ μ•„λž˜μ™€ κ°™λ‹€.


  1. 참고둜 이런 Extended Complex Plane을 β€œRiemann Sphere”라고도 ν•œλ‹€. 이 Sphereλ₯Ό μ‚¬μš©ν•˜λ©΄, λ³΅μ†Œν‰λ©΄ μƒμ˜ λͺ¨λ“  점을 ꡬ의 ν‘œλ©΄μ„ λ§€ν•‘μ‹œν‚¬ 수 μžˆλ‹€!Β