2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

6 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


Linear Transformation

\[w = Az + B \quad (A \ne 0)\]

์œ„์™€ ๊ฐ™์€ ํ˜•ํƒœ์˜ ๋ณ€ํ™˜์€ Linear Transform์ด๋ผ๊ณ  ํ•œ๋‹ค.

๋ณต์†Œ ์˜์—ญ์—์„œ Linear Transform์ด ์–ด๋–ป๊ฒŒ ํ–‰๋™ํ•˜๋Š”์ง€ ์ผ€์ด์Šค ๋ณ„๋กœ ์‚ดํŽด๋ณด์ž.


(1) $B=0$

\[w = Az \quad (A \ne 0)\]

$A = a \cdot e^{i\alpha}$, $z = r \cdot e^{i\theta}$๋ผ๊ณ  ๋‘๋ฉด, $w$๋Š” $w = (ar) \cdot e^{i(\theta + \alpha)}$๊ฐ€ ๋œ๋‹ค.

  • ๊ฐ๋„ $\alpha$ ๋งŒํผ Domain์ด ํšŒ์ „ ์ด๋™
  • $a = \lvert A \rvert$ ๋งŒํผ ์ˆ˜์ถ•/ํŒฝ์ฐฝ

(2) $A=1$

\[w = z + B\]
  • $B$ ๋งŒํผ ํ‰ํ–‰ ์ด๋™

(3) General form

\[w = Az + B\]

(1), (2)์˜ ์ƒํ™ฉ์ด ํ•ฉ์„ฑ๋œ ์ƒํ™ฉ์œผ๋กœ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค.

\[z \longrightarrow Az \longrightarrow Az + B\]

Image of Linear transform; Square Domain

The image of the set $\{ x + ig : 0 \le x \le 1, \; 0 \le y \le 2 \}$ under the map

\[w = (1+i)z + 2\]

transform $w$๋ฅผ ๋‘ ๋‹จ๊ณ„๋กœ ๋‚˜๋ˆ„์–ด ์‹ค์‹œํ•˜์ž.

  1. $w_1 = (1+i)z$
  2. $w_2 = w_1 + 2$

Inversion mapping; $w = \frac{1}{z}$

Write $z = r \cdot e^{i\theta}$, THEN $w = \frac{1}{r} \cdot e^{-i\theta}$

inversion mapping $w = \frac{1}{z}$๋Š” $z$๋ฅผ x-์ถ•์œผ๋กœ ๋ฐ˜์ „์‹œํ‚ค๊ณ , ๊ธธ์ด๋ฅผ ์ˆ˜์ถ•/ํŒฝ์ฐฝ์‹œํ‚จ๋‹ค.

$\frac{1}{r}$์„ ์ทจํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ณต์†Œ์ˆ˜ $z$๊ฐ€ ์›์  $O$์— ๊ฐ€๊นŒ์›Œ์งˆ ์ˆ˜๋ก image๊ฐ€ ๋ฐœ์‚ฐํ•œ๋‹ค.

Extended complex plane; $\mathbb{C} \cup \{ \infty \}$

Transform $T(z)$๋ฅผ niceํ•˜๊ฒŒ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ $\{ \infty \}$๋ฅผ ์ถ”๊ฐ€ํ•ด ์ด๋ฏธ์ง€ ์˜์—ญ์„ ํ™•์žฅ์‹œํ‚จ๋‹ค.

For a transform $T(z) = \frac{1}{z}$, Let $T(0) = \infty$ and $T(\infty) = 0$, THEN $T$ is continuous.

Picture from link

1

์›๋ž˜ $T(z)$๋Š” $0$์—์„œ ๊ฐ’์ด ์ •์˜๋˜์ง€ ์•Š๋Š”๋‹ค. ๊ทธ๋Ÿฐ๋ฐ Extended complex plane์„ ์ƒ๊ฐํ•ด์„œ $T(0) = \infty$๋กœ ๊ฐ’์„ ๋ถ€์—ฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ฆ‰, $\infty$๋ผ๋Š” ํ•œ ์ ์„ ์ถ”๊ฐ€ํ•ด Image space๋ฅผ $\mathbb{C}$์—์„œ $\mathbb{C} \cup \{ \infty \}$๋กœ ํ™•์žฅํ•œ๋‹ค๋ฉด, $T(z)$๋ฅผ $z=0$์—์„œ๊นŒ์ง€ continuousํ•˜๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค.

\[\lim_{z \rightarrow 0} {T(z)} = \infty = T(0)\]

์ด๋ฅผ ํ†ตํ•ด $T(z)$๋ฅผ ๋ณต์†Œํ‰๋ฉด ์ „์ฒด์—์„œ continuousํ•˜๊ฒŒ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค.


Images of inversion mapping

(1) $x=c$ under $w = \frac{1}{z}$

\[\begin{aligned} w &= u + i v = \frac{1}{x + iy} \\ z &= x + iy = \frac{1}{u + iy} = \frac{u}{u^2 + v^2} - i \frac{v}{u^2 + v^2} \end{aligned}\] \[\begin{aligned} x = \frac{u}{u^2 + v^2} &= c \\ c(u^2 + v^2) - u &= 0 \\ u^2 + v^2 - \frac{1}{c} u &= 0 \\ \left(u - \frac{1}{2c}\right)^2 + v^2 &= \left( \frac{1}{2c} \right)^2 \end{aligned}\]

๋”ฐ๋ผ์„œ ์ง์„  $x=c$๋Š” w-plane์— ์›์œผ๋กœ ๋งคํ•‘๋œ๋‹ค.

(2) $\{ x + iy : x \ge c \}$ under $w = \frac{1}{z}$


Statement.

$w=\frac{1}{z}$ transforms (circles and lines) into (circles and lines).

์ผ๋ฐ˜์ ์œผ๋กœ circle๊ณผ line์€ ์•„๋ž˜์˜ ์‹์œผ๋กœ ํ‘œํ˜„๋œ๋‹ค.

\[A(x^2 + y^2) + Bx + Cy + D = 0 \quad (B^2 + C^2 > 4 AD)\]

* line
$A=0$: $Bx + Cy + D = 0$

* circle
$A \ne 0$: $\left(x + \frac{B}{2A}\right)^2 + \left( y + \frac{C}{2A}\right)^2 = \left(\frac{\sqrt{B^2 + C^2 - 4 AD}}{2A}\right)^2$

์ด๋•Œ, ์šฐ๋ฆฌ๊ฐ€ $(x, y)$์™€ $(u, v)$์— ๋Œ€ํ•œ ๊ด€๊ณ„์‹์„ ์•Œ๊ณ  ์žˆ์œผ๋‹ˆ, $(x, y)$์— ๋Œ€ํ•œ ์œ„์˜ ์‹์„ $(u, v)$์— ๋Œ€ํ•œ ์‹์œผ๋กœ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ๋‹ค!

\[\begin{aligned} w &= u + iv \\ z &= x + iy = \frac{1}{u + iv} = \frac{u}{u^2 + v^2} - i \frac{v}{u^2 + v^2} \end{aligned}\]

์œ„์˜ ๊ด€๊ณ„์‹์œผ๋กœ๋ถ€ํ„ฐ

(1) $x = \dfrac{u}{u^2 + v^2}$, $y = -\dfrac{v}{u^2 + v^2}$

(2) $x^2 + y^2 = \dfrac{1}{u^2 + v^2}$

๋ฅผ ์œ ๋„ํ•  ์ˆ˜ ์žˆ๊ณ ,

\[\begin{aligned} A(x^2 + y^2) + Bx + Cy + D &= 0 \quad (B^2 + C^2 > 4 AD) \\ A\left(\frac{1}{u^2 + v^2}\right) + B\left(\frac{u}{u^2 + v^2}\right) + C\left(-\frac{v}{u^2 + v^2}\right) + D &= 0 \\ D(u^2 + v^2) + Bu + C(-v) + A &= 0 \end{aligned}\]

๋”ฐ๋ผ์„œ inversion mapping $w = \frac{1}{z}$์— ๋Œ€ํ•œ Image๋Š” line ๋˜๋Š” circle์ด ๋œ๋‹ค.


$A$, $D$์— ๋”ฐ๋ฅธ ๊ฒฝ์šฐ๋ฅผ ํ‘œ๋กœ ๋ถ„๋ฅ˜ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.


  1. ์ฐธ๊ณ ๋กœ ์ด๋Ÿฐ Extended Complex Plane์„ โ€œRiemann Sphereโ€๋ผ๊ณ ๋„ ํ•œ๋‹ค. ์ด Sphere๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด, ๋ณต์†Œํ‰๋ฉด ์ƒ์˜ ๋ชจ๋“  ์ ์„ ๊ตฌ์˜ ํ‘œ๋ฉด์„ ๋งคํ•‘์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค!ย