2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

7 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


Linear Fractional Transformation

\[w = \frac{az + b}{cz + d}\]

Linear Fractional Trans.์˜ ๊ฐ ์ผ€์ด์Šค๋ฅผ ์‚ดํŽด๋ณด์ž!



(1) $ad - bc = 0$
\[\begin{aligned} ad - bc = 0 \iff \frac{a}{b} = \frac{c}{d} \quad (b, \; d \ne 0) \end{aligned}\]

๋งŒ์•ฝ ์œ„์™€ ๊ฐ™์ด $ad - bc = 0$์ด๋ผ๋Š” ์กฐ๊ฑด์—์„œ๋Š” $w = C$; const transformation์ด ๋œ๋‹ค!

\[w = \frac{\frac{a}{b} z + 1}{\frac{c}{d} z + 1} = 1 \quad (ad - bc = 0)\]

์ด๋Ÿฐ const transformation์€ ์šฐ๋ฆฌ์˜ ๊ด€์‹ฌ์ด ์•„๋‹ˆ๋‹ค!


Derivative of Linear Fractional Transform
\[\begin{aligned} \frac{dw}{dz} &= \frac{a \cdot (cz + d) - c \cdot (az + b)}{(cz + d)^2} \\ &= \frac{ad - bc}{(cz + d)^2} \end{aligned}\]

์šฐ๋ฆฌ๊ฐ€ $ad - bc \ne 0$์ด๋ผ๊ณ  ๊ฐ€์ •ํ•œ๋‹ค๋ฉด, Linear Fractional Transform์€ ๋ฏธ๋ถ„๊ฐ’์ด $0$์ด ๋˜์ง€ ์•Š๋Š”๋‹ค!!



some special cases

(i) $c=0$, $d=1$

$w = \dfrac{az + b}{0z + 1} = az + b$; Linear Transformation

(ii) $a=d=0$, $b=c=1$

$w = \dfrac{0z + 1}{1z + 0} = \dfrac{1}{z}$; Inversion Transformation



Inverse of Linear Frational Transformation
\[\begin{aligned} w &= \frac{az + b}{cz + d} \\ w \cdot (cz + d) &= az + b \\ (c \cdot w - a) z &= - d \cdot w + b \\ z &= \frac{-d \cdot w + b}{c \cdot w - a} \end{aligned}\]

์ฆ‰, Inverse Transform ์—ญ์‹œ Linear Fractional Trnasformation์ด๋‹ค!



Linear Fractional Transform + Extended Complex Plane

$w = T(z) = \frac{az + b}{cz + d}$๋Š” $z = -\frac{d}{c}$์—์„œ ์ •์˜๋˜์ง€ ์•Š๋Š”๋‹ค. Linear Fractional Transform์—์„œ๋„ Extended Complex Plane์„ ๋„์ž…ํ•˜์—ฌ $T\left(-\frac{d}{c}\right) = \infty$๋กœ ์ •์˜ํ•œ๋‹ค.

  • $T\left(-\frac{d}{c}\right) = \infty$
  • $T\left(\infty\right) = \underset{z \rightarrow \infty}{\lim} \frac{az+b}{cz+d} = \frac{a}{c}$
    • ๋งŒ์•ฝ $c=0$์ด๋ผ๋ฉด, $T\left(\infty\right) = \infty$



Properties of L.F. Transform

Statement.

$w = \frac{az+b}{cz+d}$ transforms (circles and lines) into (circles and lines).


proof.

\[\begin{aligned} w &= \frac{az+b}{cz+d} \\ &= \frac{\dfrac{a}{c}(cz+d) + \left(b - \dfrac{a}{c}d\right)}{cz+d} \\ &= \frac{a}{c} + \frac{k}{cz + d} \quad \left(k = b - \dfrac{a}{c}d\right) \end{aligned}\]

์ฆ‰,

\[z \longrightarrow cz + d \longrightarrow \frac{1}{cz+d} \longrightarrow k \cdot \frac{1}{cz+d} + \frac{a}{c}\]

๋”ฐ๋ผ์„œ L.F. Trnasform์€ Linear Trnasform๊ณผ Inversion Transform์˜ ํ•ฉ์„ฑ์ด๋‹ค. $\blacksquare$


Exercise.

Composition of L.F. trnasform is also a L.F. transform.



Definition.; Fixed points

For $z_0 \in \mathbb{C}$, IF $T(z_0) = z_0$, THEN $z_0$ is a fixed point of $T(z)$.

Let $T(z) = \frac{az+b}{cz+d}$, THEN

\[\begin{aligned} &T(z_0) = \frac{az_0+b}{cz_0+d} = z_0 \\ &\implies c {z_0}^2 + d z_0 = a z_0 + b \\ &\implies c {z_0}^2 + (d-a) z_0 - b = 0 \end{aligned}\]

$c {z_0}^2 + (d-a) z_0 - b = 0$๋Š” 2์ฐจ ๋ฐฉ์ •์‹์œผ๋กœ ํ•ด๊ฐ€ ๋งŽ์•„์•ผ 2๊ฐœ๋‹ค.

(i) $c\ne0$ :
at most two fixed points

(ii) $c = 0$:

  • $d-a \ne 0$ : $z_0 = -\frac{b}{d-a}$
  • $d-a = 0$, $b\ne0$ : no fixed point
  • $d-a = 0$, $b=0$ : $T(z) = z$; $\mathbb{C}$



Lemma.

Let $T_1(z) = \frac{az+b}{cz+d}$, and $T_2(z) = \frac{Az+B}{Cz+D}$
Supp. that $T_1(z_1) = T_2(z_1)$, $T_1(z_2) = T_2(z_2)$, and $T_1(z_3) = T_2(z_3)$
THEN, $$ T_1(z) = T_2(z) $$

์ฆ‰, ๋‘ Transform์ด ์„ธ ์ ์—์„œ ๊ทธ ๊ฐ’์ด ๊ฐ™๋‹ค๋ฉด, ๋‘ Transform์€ ๋™์ผํ•˜๋‹ค๋Š” ๋ง์ด๋‹ค.


proof.

$T^{-1}_1 \circ T_2$ is also a L.F. transform

THEN,

\[\begin{aligned} T^{-1}_1 \circ T_2(z_1) = T^{-1}_1 (z_1) = z_1 \\ T^{-1}_1 \circ T_2(z_2) = z_2 \\ T^{-1}_1 \circ T_2(z_3) = z_3 \\ \end{aligned}\]

์ฆ‰, $T^{-1}_1 \circ T_2$๋Š” fixed point๋ฅผ 3๊ฐœ ๊ฐ€์ง€๋ฏ€๋กœ, $T^{-1}_1 \circ T_2(z) = z$์ด๋‹ค.

๋”ฐ๋ผ์„œ $T^{-1}_1 (z) = T_2(z)$์ด๋‹ค. $\blacksquare$


Theorem.

Let $w=Tz$ be a L.F. transform s.t. $T(z_1) = w_1$, $T(z_2) = w_2$ and $T(z_3) = w_3$.
THEN the mapping $Tz$ is given by $$ \frac{w-w_1}{w-w_3} \cdot \frac{w_2-w_3}{w_2-w_1} = \frac{z-w_1}{z-w_3} \cdot \frac{z_2-w_3}{z_2-w_1} $$ (IF one of these point is the point $\infty$, THEN ๊ทธ ๋ถ€๋ถ„์„ ์•ฝ๋ถ„ํ•˜์—ฌ 1๋กœ ๋งŒ๋“ค์–ด๋ผ.) $$ w_3 = \infty \implies \frac{w-w_1}{\cancel{w-w_3}} \cdot \frac{\cancel{w_2-w_3}}{w_2-w_1} = \frac{w-w_1}{w_2-w_1} $$


proof.
Letโ€™s define two L.F transformation $F(w)$, $G(z)$

\[F(w) := \frac{w-w_1}{w-w_3} \cdot \frac{w_2-w_3}{w_2-w_1}, \quad G(z) := \frac{z-z_1}{z-z_3} \cdot \frac{z_2-z_3}{z_2-w_1}\]

THEN,

\[F(w_1) = 0, \quad F(w_2) = 1, \quad F(w_3) = \infty\] \[G(z_1) = 0, \quad G(z_2) = 1, \quad G(z_3) = \infty\]

Because $F(w)$, $G(z)$ are L.F. transform, $F^{-1} \circ G$ is also a L.F. transformation.

THEN,

\[\begin{aligned} F^{-1} \circ G(z_1) = F^{-1} (0) = w_1 \\ F^{-1} \circ G(z_2) = F^{-1} (1) = w_2 \\ F^{-1} \circ G(z_3) = F^{-1} (\infty) = w_3 \\ \end{aligned}\]

๋”ฐ๋ผ์„œ $F^{-1} \circ G$๊ฐ€ ๋ฐ”๋กœ ์šฐ๋ฆฌ๊ฐ€ ์ฐพ๋Š” L.F. transformation์ด๋‹ค!

\[\begin{aligned} F^{-1} \circ G (z) &= w \\ G(z) &= F(w) \\ \frac{z-w_1}{z-w_3} \cdot \frac{z_2-w_3}{z_2-w_1} &= \frac{w-w_1}{w-w_3} \cdot \frac{w_2-w_3}{w_2-w_1} \end{aligned}\]