Linear Fractional Transform
2020-2ํ๊ธฐ, ๋ํ์์ โ์์ฉ๋ณต์ํจ์๋ก โ ์์ ์ ๋ฃ๊ณ ๊ณต๋ถํ ๋ฐ๋ฅผ ์ ๋ฆฌํ ๊ธ์ ๋๋ค. ์ง์ ์ ์ธ์ ๋ ํ์์ ๋๋ค :)
Linear Fractional Transformation
\[w = \frac{az + b}{cz + d}\]Linear Fractional Trans.์ ๊ฐ ์ผ์ด์ค๋ฅผ ์ดํด๋ณด์!
(1) $ad - bc = 0$
\[\begin{aligned} ad - bc = 0 \iff \frac{a}{b} = \frac{c}{d} \quad (b, \; d \ne 0) \end{aligned}\]๋ง์ฝ ์์ ๊ฐ์ด $ad - bc = 0$์ด๋ผ๋ ์กฐ๊ฑด์์๋ $w = C$; const transformation์ด ๋๋ค!
\[w = \frac{\frac{a}{b} z + 1}{\frac{c}{d} z + 1} = 1 \quad (ad - bc = 0)\]์ด๋ฐ const transformation์ ์ฐ๋ฆฌ์ ๊ด์ฌ์ด ์๋๋ค!
Derivative of Linear Fractional Transform
\[\begin{aligned} \frac{dw}{dz} &= \frac{a \cdot (cz + d) - c \cdot (az + b)}{(cz + d)^2} \\ &= \frac{ad - bc}{(cz + d)^2} \end{aligned}\]์ฐ๋ฆฌ๊ฐ $ad - bc \ne 0$์ด๋ผ๊ณ ๊ฐ์ ํ๋ค๋ฉด, Linear Fractional Transform์ ๋ฏธ๋ถ๊ฐ์ด $0$์ด ๋์ง ์๋๋ค!!
some special cases
(i) $c=0$, $d=1$
$w = \dfrac{az + b}{0z + 1} = az + b$; Linear Transformation
(ii) $a=d=0$, $b=c=1$
$w = \dfrac{0z + 1}{1z + 0} = \dfrac{1}{z}$; Inversion Transformation
Inverse of Linear Frational Transformation
\[\begin{aligned} w &= \frac{az + b}{cz + d} \\ w \cdot (cz + d) &= az + b \\ (c \cdot w - a) z &= - d \cdot w + b \\ z &= \frac{-d \cdot w + b}{c \cdot w - a} \end{aligned}\]์ฆ, Inverse Transform ์ญ์ Linear Fractional Trnasformation์ด๋ค!
Linear Fractional Transform + Extended Complex Plane
$w = T(z) = \frac{az + b}{cz + d}$๋ $z = -\frac{d}{c}$์์ ์ ์๋์ง ์๋๋ค. Linear Fractional Transform์์๋ Extended Complex Plane์ ๋์ ํ์ฌ $T\left(-\frac{d}{c}\right) = \infty$๋ก ์ ์ํ๋ค.
- $T\left(-\frac{d}{c}\right) = \infty$
- $T\left(\infty\right) = \underset{z \rightarrow \infty}{\lim} \frac{az+b}{cz+d} = \frac{a}{c}$
- ๋ง์ฝ $c=0$์ด๋ผ๋ฉด, $T\left(\infty\right) = \infty$
Properties of L.F. Transform
Statement.
proof.
์ฆ,
\[z \longrightarrow cz + d \longrightarrow \frac{1}{cz+d} \longrightarrow k \cdot \frac{1}{cz+d} + \frac{a}{c}\]๋ฐ๋ผ์ L.F. Trnasform์ Linear Trnasform๊ณผ Inversion Transform์ ํฉ์ฑ์ด๋ค. $\blacksquare$
Exercise.
Definition.; Fixed points
Let $T(z) = \frac{az+b}{cz+d}$, THEN
\[\begin{aligned} &T(z_0) = \frac{az_0+b}{cz_0+d} = z_0 \\ &\implies c {z_0}^2 + d z_0 = a z_0 + b \\ &\implies c {z_0}^2 + (d-a) z_0 - b = 0 \end{aligned}\]$c {z_0}^2 + (d-a) z_0 - b = 0$๋ 2์ฐจ ๋ฐฉ์ ์์ผ๋ก ํด๊ฐ ๋ง์์ผ 2๊ฐ๋ค.
(i) $c\ne0$ :
at most two fixed points
(ii) $c = 0$:
- $d-a \ne 0$ : $z_0 = -\frac{b}{d-a}$
- $d-a = 0$, $b\ne0$ : no fixed point
- $d-a = 0$, $b=0$ : $T(z) = z$; $\mathbb{C}$
Lemma.
Supp. that $T_1(z_1) = T_2(z_1)$, $T_1(z_2) = T_2(z_2)$, and $T_1(z_3) = T_2(z_3)$
THEN, $$ T_1(z) = T_2(z) $$
์ฆ, ๋ Transform์ด ์ธ ์ ์์ ๊ทธ ๊ฐ์ด ๊ฐ๋ค๋ฉด, ๋ Transform์ ๋์ผํ๋ค๋ ๋ง์ด๋ค.
proof.
$T^{-1}_1 \circ T_2$ is also a L.F. transform
THEN,
\[\begin{aligned} T^{-1}_1 \circ T_2(z_1) = T^{-1}_1 (z_1) = z_1 \\ T^{-1}_1 \circ T_2(z_2) = z_2 \\ T^{-1}_1 \circ T_2(z_3) = z_3 \\ \end{aligned}\]์ฆ, $T^{-1}_1 \circ T_2$๋ fixed point๋ฅผ 3๊ฐ ๊ฐ์ง๋ฏ๋ก, $T^{-1}_1 \circ T_2(z) = z$์ด๋ค.
๋ฐ๋ผ์ $T^{-1}_1 (z) = T_2(z)$์ด๋ค. $\blacksquare$
Theorem.
THEN the mapping $Tz$ is given by $$ \frac{w-w_1}{w-w_3} \cdot \frac{w_2-w_3}{w_2-w_1} = \frac{z-w_1}{z-w_3} \cdot \frac{z_2-w_3}{z_2-w_1} $$ (IF one of these point is the point $\infty$, THEN ๊ทธ ๋ถ๋ถ์ ์ฝ๋ถํ์ฌ 1๋ก ๋ง๋ค์ด๋ผ.) $$ w_3 = \infty \implies \frac{w-w_1}{\cancel{w-w_3}} \cdot \frac{\cancel{w_2-w_3}}{w_2-w_1} = \frac{w-w_1}{w_2-w_1} $$
proof.
Letโs define two L.F transformation $F(w)$, $G(z)$
THEN,
\[F(w_1) = 0, \quad F(w_2) = 1, \quad F(w_3) = \infty\] \[G(z_1) = 0, \quad G(z_2) = 1, \quad G(z_3) = \infty\]Because $F(w)$, $G(z)$ are L.F. transform, $F^{-1} \circ G$ is also a L.F. transformation.
THEN,
\[\begin{aligned} F^{-1} \circ G(z_1) = F^{-1} (0) = w_1 \\ F^{-1} \circ G(z_2) = F^{-1} (1) = w_2 \\ F^{-1} \circ G(z_3) = F^{-1} (\infty) = w_3 \\ \end{aligned}\]๋ฐ๋ผ์ $F^{-1} \circ G$๊ฐ ๋ฐ๋ก ์ฐ๋ฆฌ๊ฐ ์ฐพ๋ L.F. transformation์ด๋ค!
\[\begin{aligned} F^{-1} \circ G (z) &= w \\ G(z) &= F(w) \\ \frac{z-w_1}{z-w_3} \cdot \frac{z_2-w_3}{z_2-w_1} &= \frac{w-w_1}{w-w_3} \cdot \frac{w_2-w_3}{w_2-w_1} \end{aligned}\]