Quotient Field
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Motivation.
μ μ $\mathbb{Z}$μ μ 리μ $\mathbb{Q}$μ λν΄ μκ°ν΄λ³΄μ.
μ μ $\mathbb{Z}$λ zero-divisorκ° μμΌλ―λ‘ Integral Domainμ΄λ€. λ¬Όλ‘ μ μ $\mathbb{Z}$λ Ringμ΄κΈ°λ νλ€.
μ 리μ $\mathbb{Q}$λ Integral Domainκ³Ό Ringλ³΄λ€ μμ λ¨κ³μΈ Fieldλ€.
μ°λ¦¬λ λ€λ₯Έ νλ²ν Ring-Field μ¬μ΄μλ λ¬λ¦¬ μ μ $\mathbb{Z}$μ μ 리μ $\mathbb{Q}$ μ¬μ΄μ μ΄λ€ μ’μ κ΄κ³κ° μμμ 보μ¬μ£Όκ³ μΆλ€!
μμΌλ‘ μκ°ν λ°©λ²μ μ¬μ©νλ©΄, Integral DomainμΈ $\mathbb{Z}$κ° FieldμΈ $\mathbb{Q}$μ ν¬ν¨λμ΄ μμμ λ³΄μΌ μ μλ€! νλ² μ΄ν΄λ³΄μ γ γ
μ°λ¦¬κ° μ¬μ©νλ λ°©λ²μ μΌλ°μ μΈ ννλ‘ κΈ°μ νλ©΄ μλμ κ°λ€.
4κ°μ§ λ¨κ³λ₯Ό ν΅ν΄ Integral Domain $D$λ₯Ό Quotient Field $F$λ‘ νμ₯ν μ μλ€ γ γ
1. Define element of $F$
For given domain $D$, think of Cartesian Product of it.
\[D \times D = \{(a, b) \mid a, b \in D\}\]μ°λ¦¬λ $D \times D$μ μμμΈ μμμ $(a, b)$λ₯Ό formal quotient $a/b$λΌκ³ μκ°ν κ²μ΄λ€.
νμ§λ§, $D \times D$λ₯Ό $F$λΌκ³ 보기μλ μμ§ μΆ©λΆμΉ μλ€. κ·Έλμ μλμ κ°μ Equivalent Relationμ μ μνμ.
Definition.
$\sim$κ° Equiv Relationμμ μ¦λͺ νλ κ²μ μλ΅νκ² λ€.
Equiv Relation $\sim$μ μν΄ μ λλλ Equiv Class $[(a, b)]$λ₯Ό μκ°ν΄λ³΄μ. λμ€μ μ΄κ²μ΄ λ°λ‘ μ°λ¦¬κ° μ λν $F$μ μμκ° λλ€!
μμ§ $F$λ₯Ό μμ ν μ λν κ²μ μλλ€.
2. Define addition & multiplication on $F$
Equiv class $[(a, b)]$μ λν΄ μ°μ°μ μλμ κ°μ΄ μ μνμ.
\[\begin{aligned} + &: [(a, b)] + [(c, d)] = [(ad+bc, bd)] \\ \cdot &: [(a, b)] \,\cdot\, [(c, d)] = [(ac, bd)] \end{aligned}\]μ΄μ μμμ μ μν λ μ°μ°μ΄ Well-definedλμ΄ μμμ 보μ¬μΌ νλ€.
proof..
Supp. $[(a, b)] = [(aβ, bβ)]$, and $[(c, d)] = [(cβ, dβ)]$
Check $[(ad+bc, bd)] = [(aβdβ+bβcβ, bβdβ)]$, and $[(ac, bd)] = [(aβcβ, bβdβ)]$.
μμΈν μ¦λͺ μ μλ΅νλ€.
μ΄λ₯Ό ν΅ν΄ $F$μμ μ¬μ©ν μ°μ° $+$μ $\cdot$ λ₯Ό μ μνμλ€.
3. Check $(F, +, \cdot)$ is a field
κ³Όμ 1, 2μμ μ¬μ©ν κ²λ€μ λ°νμΌλ‘ Field $(F, +, \cdot\;)$λ₯Ό μ μνλ€.
$(F, +, \cdot)$κ° Fieldμμ νμΈνκΈ° μν΄ μλμ 3κ°μ§ μ¬μ€μ νμΈν΄μΌ νλ€.
- $(F, +)$ is a abelian group
- $(F, \cdot)$ is a abelian group
- Ring Distributive Law
μμ 3κ°μ§ μ¬μ€μ νμΈνλ κ³Όμ μ μλ΅νλ€.
μ! μ΄μ μ°λ¦¬λ Field $(F, +, \cdot)$λ₯Ό μ»κ² λμλ€!
Show relationship btw $D$ and $F$
νμ§λ§, μμ§ Domain $D$μ Field $(F, +, \cdot)$ μ¬μ΄μ κ΄κ³μ λν΄μ λͺ νν μΈκΈν λ°κ° μλ€. μ΄μ μ΄ λμ κ΄κ³μ λν΄ μ΄ν΄λ³΄μ.
μ°λ¦¬λ Domain $D$κ° Field $(F, +, \cdot)$μ Sub-Domainκ³Ό λνμμ λ³΄μΌ κ²μ΄λ€.
Lemma.
We will show $D \cong \{[(d, 1)] \mid d \in D \}$
μ¦, $D$μ μ°ν μ¬μ΄μ Isomorphism $\phi$κ° μμμ λ³΄μΌ κ²μ΄λ€.
Define $\phi$ as
\[\begin{aligned} \phi: D &\longrightarrow F \\ a &\longmapsto [(a, 1)] \end{aligned}\]proof..
Check
- $\phi$ is additive homormophism
- $\phi$ is multiplicative homormophism
- $\phi$ is 1-1 & onto
μ΄κ²μ λν μ¦λͺ μμ μ½κ² ν μ μμΌλ―λ‘ μλ΅νλ€.
μ΄κ²μΌλ‘ μλμ μ λ¦¬κ° μ±λ¦½νλ€.
Theorem.
Any Integral Domain $D$ can be enlarged to a Field $F$ which consist of quotient of $D$.
μ΄λμ Field $F$λ₯Ό Quotient FieldλΌκ³ νλ€.
Uniqueness of Quotient Field
Domain $D$λ₯Ό ν¬ν¨νλ μ΄λ€ Fieldκ° μλ€κ³ νμ. κ·Έλ¬λ©΄ μ΄ Fieldμλ $a, b \in D$μ λν΄ $a/b$λ₯Ό μμλ‘ κ°μ§ κ²μ΄λ€.
λ°λΌμ μ°λ¦¬κ° $D$λ‘λΆν° μ λν Field $F$λ $D$λ₯Ό ν¬ν¨νλ κ°μ₯ μμ Fieldκ° λ κ²μ΄λ€!!
μ¦, Domain $D$λ₯Ό ν¬ν¨νλ λͺ¨λ Fieldλ $D$μ Quotient Fieldλ₯Ό ν¬ν¨νλ©°, λν Domain $D$μ any two Qutotient Fieldλ μλ‘ λνμ΄λ€.
μ΄κ²μ μνμ μΌλ‘ κΈ°μ νλ©΄ μλμ κ°λ€.
Theorem.
Let $F$ be a Quotient Field of Domain $D$, and let $L$ be a any field containing $D$. ($L$ is any extension field of $D$.)
THEN, $\exists$ a 1-1 ring homormophism $\psi: F \longrightarrow L$ s.t. $\psi(x) = x$ for $\forall x \in D$.
μ¦, $F \cong \psi[F] \subset L$.
proof..
$L$ is extension field of $D$. λ°λΌμ $D \le L$.
μ΄μ $L$κ³Ό $F$ μ¬μ΄μ homomorphism $\psi$λ₯Ό μ μν΄λ³΄μ.
\[\begin{aligned} \psi: F &\longrightarrow L \\ \frac{a}{b} &\longmapsto ab^{-1} \end{aligned}\]μ΄ $\psi$κ° 1-1 & ring homomorphismμμ νμΈνμ.
(1) $\psi$ is a ring homo-.
- Ring Multiplication
- Ring Addition
(2) $\psi$ is 1-1
$\ker \psi = \{ e \}$μΈμ§ νμΈνμ.
Supp. $\psi \left( \frac{a}{b} \right) = 0_L$, then
\[\begin{aligned} &ab^{-1} = 0_L \\ &\implies (ab^{-1}) \cdot b = a \cdot = 0 \cdot b = b \\ \end{aligned}\]λ°λΌμ $a = 0$μ΄κ³ , μ΄κ²μ $\ker \psi = \{ 0_F \} = \{ e \}$λ₯Ό μλ―Ένλ€.
μ°λ¦¬λ λͺ μ μμ μꡬνλ ring homomorphism $\psi$λ₯Ό μ μ μνμλ€.
μ΄κ²μ΄ μλμ λ μ±μ§μ λ§μ‘±μν€λμ§ νμΈνμ.
- for $x \in D$, $\psi(x) = x$
- $F \cong \psi[F]$
$x \in D$λ $F$ μλμμ $\dfrac{x}{1} \in F$μ΄λ€.
μ΄λ, $\psi \left( \dfrac{x}{1} \right) = x \cdot 1^{-1} = x \in D$μ΄λ€.
λ°λΌμ $\psi$λ $D$λ₯Ό 보쑴νλ μ¬μμ΄λ€.
$\psi$κ° ring homo-., 1-1μμ λ°νλ€.
$\psi[F]$λ $\psi$μ Image μ΄λ―λ‘ onto μμ μ±λ¦½νλ€.
λ°λΌμ $F \cong \psi[F]$μ΄λ€.
Corollary.
Every field $L$ containing an integral domain $D$ contains the field of quotient of $D$.
Corollary.
Any two field of quotient of an integral domain $D$ are isomorphic as rings.