2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

8 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


Motivation.

μ •μˆ˜ $\mathbb{Z}$와 유리수 $\mathbb{Q}$에 λŒ€ν•΄ μƒκ°ν•΄λ³΄μž.

μ •μˆ˜ $\mathbb{Z}$λŠ” zero-divisorκ°€ μ—†μœΌλ―€λ‘œ Integral Domain이닀. λ¬Όλ‘  μ •μˆ˜ $\mathbb{Z}$λŠ” Ring이기도 ν•˜λ‹€.

유리수 $\mathbb{Q}$λŠ” Integral Domainκ³Ό Ring보닀 μƒμœ„ 단계인 Fieldλ‹€.

μš°λ¦¬λŠ” λ‹€λ₯Έ ν‰λ²”ν•œ Ring-Field μ‚¬μ΄μ™€λŠ” 달리 μ •μˆ˜ $\mathbb{Z}$와 유리수 $\mathbb{Q}$ 사이에 μ–΄λ–€ 쒋은 관계가 μžˆμŒμ„ 보여주고 μ‹Άλ‹€!

μ•žμœΌλ‘œ μ†Œκ°œν•  방법을 μ‚¬μš©ν•˜λ©΄, Integral Domain인 $\mathbb{Z}$κ°€ Field인 $\mathbb{Q}$에 ν¬ν•¨λ˜μ–΄ μžˆμŒμ„ 보일 수 μžˆλ‹€! ν•œλ²ˆ μ‚΄νŽ΄λ³΄μž γ…Žγ…Ž


μš°λ¦¬κ°€ μ‚¬μš©ν•˜λŠ” 방법을 일반적인 ν˜•νƒœλ‘œ κΈ°μˆ ν•˜λ©΄ μ•„λž˜μ™€ κ°™λ‹€.

Integral Domain $D$λ₯Ό Quotient Field $F$둜 ν™•μž₯

4가지 단계λ₯Ό 톡해 Integral Domain $D$λ₯Ό Quotient Field $F$둜 ν™•μž₯ν•  수 μžˆλ‹€ γ…Žγ…Ž



1. Define element of $F$

For given domain $D$, think of Cartesian Product of it.

\[D \times D = \{(a, b) \mid a, b \in D\}\]

μš°λ¦¬λŠ” $D \times D$의 μ›μ†ŒμΈ μˆœμ„œμŒ $(a, b)$λ₯Ό formal quotient $a/b$라고 생각할 것이닀.

ν•˜μ§€λ§Œ, $D \times D$λ₯Ό $F$라고 λ³΄κΈ°μ—λŠ” 아직 μΆ©λΆ„μΉ˜ μ•Šλ‹€. κ·Έλž˜μ„œ μ•„λž˜μ™€ 같은 Equivalent Relation을 μ •μ˜ν•˜μž.

Definition.

$$ (a, b) \sim (c, d) \iff ad = bc $$

$\sim$κ°€ Equiv Relationμž„μ„ 증λͺ…ν•˜λŠ” 것은 μƒλž΅ν•˜κ² λ‹€.

Equiv Relation $\sim$에 μ˜ν•΄ μœ λ„λ˜λŠ” Equiv Class $[(a, b)]$λ₯Ό μƒκ°ν•΄λ³΄μž. λ‚˜μ€‘μ— 이것이 λ°”λ‘œ μš°λ¦¬κ°€ μœ λ„ν•  $F$의 μ›μ†Œκ°€ λœλ‹€!

아직 $F$λ₯Ό μ™„μ „νžˆ μœ λ„ν•œ 것은 μ•„λ‹ˆλ‹€.



2. Define addition & multiplication on $F$

Equiv class $[(a, b)]$에 λŒ€ν•΄ 연산을 μ•„λž˜μ™€ 같이 μ •μ˜ν•˜μž.

\[\begin{aligned} + &: [(a, b)] + [(c, d)] = [(ad+bc, bd)] \\ \cdot &: [(a, b)] \,\cdot\, [(c, d)] = [(ac, bd)] \end{aligned}\]

이제 μœ„μ—μ„œ μ •μ˜ν•œ 두 연산이 Well-definedλ˜μ–΄ μžˆμŒμ„ 보여야 ν•œλ‹€.

proof..

Supp. $[(a, b)] = [(a’, b’)]$, and $[(c, d)] = [(c’, d’)]$

Check $[(ad+bc, bd)] = [(a’d’+b’c’, b’d’)]$, and $[(ac, bd)] = [(a’c’, b’d’)]$.

μžμ„Έν•œ 증λͺ…은 μƒλž΅ν•œλ‹€.

이λ₯Ό 톡해 $F$μ—μ„œ μ‚¬μš©ν•  μ—°μ‚° $+$와 $\cdot$ λ₯Ό μ •μ˜ν•˜μ˜€λ‹€.



3. Check $(F, +, \cdot)$ is a field

κ³Όμ • 1, 2μ—μ„œ μ‚¬μš©ν•œ 것듀을 λ°”νƒ•μœΌλ‘œ Field $(F, +, \cdot\;)$λ₯Ό μ •μ˜ν•œλ‹€.

$(F, +, \cdot)$κ°€ Fieldμž„μ„ ν™•μΈν•˜κΈ° μœ„ν•΄ μ•„λž˜μ˜ 3가지 사싀을 확인해야 ν•œλ‹€.

  1. $(F, +)$ is a abelian group
  2. $(F, \cdot)$ is a abelian group
  3. Ring Distributive Law

μœ„μ˜ 3가지 사싀을 ν™•μΈν•˜λŠ” 과정은 μƒλž΅ν•œλ‹€.


자! 이제 μš°λ¦¬λŠ” Field $(F, +, \cdot)$λ₯Ό μ–»κ²Œ λ˜μ—ˆλ‹€!



Show relationship btw $D$ and $F$

ν•˜μ§€λ§Œ, 아직 Domain $D$와 Field $(F, +, \cdot)$ μ‚¬μ΄μ˜ 관계에 λŒ€ν•΄μ„  λͺ…ν™•νžˆ μ–ΈκΈ‰ν•œ λ°”κ°€ μ—†λ‹€. 이제 이 λ‘˜μ˜ 관계에 λŒ€ν•΄ μ‚΄νŽ΄λ³΄μž.

μš°λ¦¬λŠ” Domain $D$κ°€ Field $(F, +, \cdot)$의 Sub-Domainκ³Ό λ™ν˜•μž„μ„ 보일 것이닀.


Lemma.

We will show $D \cong \{[(d, 1)] \mid d \in D \}$

즉, $D$와 μš°ν•­ 사이에 Isomorphism $\phi$κ°€ μžˆμŒμ„ 보일 것이닀.

Define $\phi$ as

\[\begin{aligned} \phi: D &\longrightarrow F \\ a &\longmapsto [(a, 1)] \end{aligned}\]

proof..

Check

  1. $\phi$ is additive homormophism
  2. $\phi$ is multiplicative homormophism
  3. $\phi$ is 1-1 & onto

이것에 λŒ€ν•œ 증λͺ… μ—­μ‹œ μ‰½κ²Œ ν•  수 μžˆμœΌλ―€λ‘œ μƒλž΅ν•œλ‹€.



μ΄κ²ƒμœΌλ‘œ μ•„λž˜μ˜ 정리가 μ„±λ¦½ν•œλ‹€.

Theorem.

Any Integral Domain $D$ can be enlarged to a Field $F$ which consist of quotient of $D$.

μ΄λ•Œμ˜ Field $F$λ₯Ό Quotient Field라고 ν•œλ‹€.



Uniqueness of Quotient Field

Domain $D$λ₯Ό ν¬ν•¨ν•˜λŠ” μ–΄λ–€ Fieldκ°€ μžˆλ‹€κ³  ν•˜μž. 그러면 이 Fieldμ—λŠ” $a, b \in D$에 λŒ€ν•΄ $a/b$λ₯Ό μ›μ†Œλ‘œ κ°€μ§ˆ 것이닀.

λ”°λΌμ„œ μš°λ¦¬κ°€ $D$λ‘œλΆ€ν„° μœ λ„ν•œ Field $F$λŠ” $D$λ₯Ό ν¬ν•¨ν•˜λŠ” κ°€μž₯ μž‘μ€ Fieldκ°€ 될 것이닀!!

즉, Domain $D$λ₯Ό ν¬ν•¨ν•˜λŠ” λͺ¨λ“  FieldλŠ” $D$의 Quotient Fieldλ₯Ό ν¬ν•¨ν•˜λ©°, λ˜ν•œ Domain $D$의 any two Qutotient FieldλŠ” μ„œλ‘œ λ™ν˜•μ΄λ‹€.


이것을 μˆ˜ν•™μ μœΌλ‘œ κΈ°μˆ ν•˜λ©΄ μ•„λž˜μ™€ κ°™λ‹€.

Theorem.

Let $F$ be a Quotient Field of Domain $D$, and let $L$ be a any field containing $D$. ($L$ is any extension field of $D$.)

THEN, $\exists$ a 1-1 ring homormophism $\psi: F \longrightarrow L$ s.t. $\psi(x) = x$ for $\forall x \in D$.

즉, $F \cong \psi[F] \subset L$.


proof..

$L$ is extension field of $D$. λ”°λΌμ„œ $D \le L$.

이제 $L$κ³Ό $F$ μ‚¬μ΄μ˜ homomorphism $\psi$λ₯Ό μ •μ˜ν•΄λ³΄μž.

\[\begin{aligned} \psi: F &\longrightarrow L \\ \frac{a}{b} &\longmapsto ab^{-1} \end{aligned}\]

이 $\psi$κ°€ 1-1 & ring homomorphismμž„μ„ ν™•μΈν•˜μž.


(1) $\psi$ is a ring homo-.

  • Ring Multiplication
\[\begin{aligned} \psi \left( \frac{a}{b} \cdot \frac{c}{d} \right) &= \psi \left( \frac{ac}{bd} \right) \\ &= (ac)(bd)^{-1} \\ &= (ac)(d^{-1}b^{-1}) \\ &= ab^{-1} cd^{-1} \\ &= \psi \left(\frac{a}{b} \right) \cdot \psi \left(\frac{c}{d} \right) \end{aligned}\]
  • Ring Addition
\[\begin{aligned} \psi \left( \frac{a}{b} + \frac{c}{d} \right) &= \psi \left( \frac{ad + bc}{bd} \right) \\ &= (ad +bc)(bd)^{-1} \\ &= (ad + bc)(d^{-1}b^{-1}) \\ &= (ad)(d^{-1}b^{-1}) + (bc)(d^{-1}b^{-1}) \\ &= ab^{-1} + cd^{-1} \\ &= \psi \left(\frac{a}{b} \right) + \psi \left(\frac{c}{d} \right) \end{aligned}\]


(2) $\psi$ is 1-1

$\ker \psi = \{ e \}$인지 ν™•μΈν•˜μž.

Supp. $\psi \left( \frac{a}{b} \right) = 0_L$, then

\[\begin{aligned} &ab^{-1} = 0_L \\ &\implies (ab^{-1}) \cdot b = a \cdot = 0 \cdot b = b \\ \end{aligned}\]

λ”°λΌμ„œ $a = 0$이고, 이것은 $\ker \psi = \{ 0_F \} = \{ e \}$λ₯Ό μ˜λ―Έν•œλ‹€.


μš°λ¦¬λŠ” λͺ…μ œμ—μ„œ μš”κ΅¬ν•˜λŠ” ring homomorphism $\psi$λ₯Ό 잘 μ •μ˜ν•˜μ˜€λ‹€.

이것이 μ•„λž˜μ˜ 두 μ„±μ§ˆμ€ λ§Œμ‘±μ‹œν‚€λŠ”μ§€ ν™•μΈν•˜μž.

  • for $x \in D$, $\psi(x) = x$
  • $F \cong \psi[F]$


$x \in D$λŠ” $F$ μ•„λž˜μ—μ„œ $\dfrac{x}{1} \in F$이닀.

μ΄λ•Œ, $\psi \left( \dfrac{x}{1} \right) = x \cdot 1^{-1} = x \in D$이닀.

λ”°λΌμ„œ $\psi$λŠ” $D$λ₯Ό λ³΄μ‘΄ν•˜λŠ” 사상이닀.


$\psi$κ°€ ring homo-., 1-1μž„μ„ λ°ν˜”λ‹€.

$\psi[F]$λŠ” $\psi$의 Image μ΄λ―€λ‘œ onto μ—­μ‹œ μ„±λ¦½ν•œλ‹€.

λ”°λΌμ„œ $F \cong \psi[F]$이닀.



Corollary.

Every field $L$ containing an integral domain $D$ contains the field of quotient of $D$.


Corollary.

Any two field of quotient of an integral domain $D$ are isomorphic as rings.