Bernoulli Number derived by Maclaurin series
2020-2νκΈ°, λνμμ βμμ©λ³΅μν¨μλ‘ β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
problem.
The Maclaurin series
\[\frac{z}{e^z - 1} = 1 + B_1 z + \frac{B_2}{2!} z^2 + \frac{B_3}{3!} z^3 + \cdots\]defines the Bernoulli numbers $B_n$. Evaluate $B_1$, $B_2$, $B_3$, β¦
solution.
μ°λ¦¬κ° νμ€ν μλ Seriesμμ μΆλ°νλ€.
\[\begin{aligned} e^z &= 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots \\ e^z - 1 &= z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots \\ \frac{e^z-1}{z} &= 1 + \frac{z}{2!} + \frac{z^2}{3!} + \cdots \end{aligned}\]μ΄λ, λ Sereisλ₯Ό κ³±ν΄μ£Όλ©΄ μλμ κ°λ€.
\[\begin{aligned} \frac{e^z-1}{z} \cdot \frac{z}{e^z-1} = 1 \end{aligned}\]μμ μμ λ Seriesμ κ³±μ΄ μμν μ μ μΈνκ³ λ λͺ¨λ 0μ κ³μλ₯Ό κ°μ§μ 보μ¬μ€λ€. λ°λΌμ
\[\begin{aligned} \frac{e^z-1}{z} \cdot \frac{z}{e^z-1} = \left( 1 + \frac{z}{2!} + \frac{z^2}{3!} + \cdots \right) \cdot \left( 1 + B_1 z + \frac{B_2}{2!} z^2 + \frac{B_3}{3!} z^3 + \cdots \right) = 1 \end{aligned}\]λ°λΌμ
\[\begin{aligned} 1&: 1 \cdot 1 = 1 \\ z&: 1 \cdot B_1 + \frac{1}{2!} \cdot 1 = 0 &\implies B_1 = -\frac{1}{2}\\ z^2&: 1 \cdot \frac{B_2}{2!} + \frac{1}{2!} \cdot B_1 + \frac{1}{3!} \cdot 1 = 0 &\implies B_2 = \frac{1}{6} \\ \vdots \end{aligned}\]μ΄μ κ°μ λ°©μμ ν΅ν΄ Bernoulli number $B_n$μ μ λν μ μλ€! $\blacksquare$
μ΄μΈμλ Bernoulli number $B_n$μ μ λνλ λ€μν λ°©λ²λ€μ΄ μκ³ , λ§μ λ°°κ²½λ€μ΄ μλ€ :)