2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

4 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


Theorem.

Let $H \times K$ be a direct product of group $H$, $K$.

Then, $\overline{H} = H \times \{ e_K \}$ is a normal subgroup of $H \times K$.

μ΄λ•Œ,

\[H \times K / {\overline{H}} = H \times K / H \times \{ e_K \} \cong K\]

proof.

2번째 λͺ…μ œλ§Œ 증λͺ…ν•˜κ² λ‹€.

Homomorphism $\phi$λ₯Ό ν•˜λ‚˜ μ •μ˜ν•˜μž.

\[\begin{aligned} \phi: H \times K & \longrightarrow K \\ (h, k) & \longmapsto k \end{aligned}\]

μ΄λ•Œ, homomorphism의 kernel을 μƒκ°ν•΄λ³΄μž. 그러면, $\ker \phi = (H, e_K)$이닀.

FHT에 λ”°λ₯΄λ©΄,

\[H \times K / {\ker \phi} \cong \phi[ H \times K ]\]

이닀.

λ”°λΌμ„œ

\[\begin{aligned} H \times K / \ker \phi &\cong \phi[H \times K] \\ H \times K / (H, e_K) = H \times K / \overline{H} &\cong K \end{aligned}\]

$\blacksquare$



Theorem.

A factor group of cyclic is also cyclic.



μ•„μ£Όμ•„μ£Όμ•„μ£Ό μ€‘μš”ν•œ λ¬Έμ œλ‹€!!

example.

\[\mathbb{Z}_4 \times \mathbb{Z}_6 / <(2, 3)> \; \cong \; ?\]

Sol.

λ¨Όμ € 주어진 factor group $\mathbb{Z}_4 \times \mathbb{Z}_6 / <(2, 3)>$의 μœ„μˆ˜λ₯Ό κ΅¬ν•΄λ³΄μž.

\[\lvert \mathbb{Z}_4 \times \mathbb{Z}_6 / <(2, 3)> \rvert = 24/2 = 12\]

직접 계산을 해보면, $\lvert <(2, 3)> \rvert = 2$μž„μ„ 확인할 수 μžˆλ‹€.


이 μ΄ν›„μ—λŠ” cyclic group인 $\mathbb{Z}_4 \times \mathbb{Z}_6$의 factor groupμ΄λ―€λ‘œ $\mathbb{Z}_4 \times \mathbb{Z}_6 / <(2, 3)>$ μ—­μ‹œ cyclic group이어야 ν•œλ‹€.

μ΄λ•Œ, β€œF.T. of f.g. abelian”을 ν™œμš©ν•΄ μœ„μˆ˜κ°€ 12인 Cyclic Grouop을 찾아보면 μ•„λž˜μ˜ 두 Group이 λœλ‹€.

  • $\mathbb{Z}_3 \times \mathbb{Z}_4$
  • $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$


μ΄λ²ˆμ—λŠ” $H = <(2, 3)>$의 left cosetλ“€ 쀑 ν•˜λ‚˜λ₯Ό; 직접 μ‚΄νŽ΄λ³΄μž.

$(1, 0) + H \in \mathbb{Z}_4 \times \mathbb{Z}_6 / <(2, 3)>$

$(1, 0) + H$의 μœ„μˆ˜λŠ”

  • $\left((1, 0) + H\right) + \left((1, 0) + H\right) = \left((2, 0) + H\right) \ne H$
  • $(3, 0) + H \ne H$
  • $(4, 0) + H = H$

λ”°λΌμ„œ $\lvert (1, 0) + H \rvert = 4$이닀.


이제 μ•žμ—μ„œ β€œF.T. of f.g. abelianβ€μ—μ„œ 얻은 두 cyclic group 쀑 μœ„μˆ˜ 4의 μ›μ†Œλ₯Ό κ°–λŠ” group을 μ°Ύμ•„λ³΄μž.

$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$λŠ” μœ„μˆ˜κ°€ 1, 2, 3, 6인 μ›μ†Œλ§Œμ„ κ°–λŠ”λ‹€. λ”°λΌμ„œ 이 cyclic group은 μš°λ¦¬κ°€ μ°ΎλŠ” λ™ν˜•μΈ Group이 μ•„λ‹ˆλ‹€!

$\mathbb{Z}_3 \times \mathbb{Z}_4$의 경우, μœ„μˆ˜κ°€ 4인 μ›μ†Œλ₯Ό κ°–λŠ”λ‹€! λ”°λΌμ„œ $\mathbb{Z}_3 \times \mathbb{Z}_4$κ°€ μš°λ¦¬κ°€ 찾고자 ν•˜λŠ” λ™ν˜•μΈ Cyclic Group이닀!!

λ”°λΌμ„œ

\[\mathbb{Z}_4 \times \mathbb{Z}_6 / <(2, 3)> \; \cong \; \mathbb{Z}_3 \times \mathbb{Z}_4\]

$\blacksquare$



λ§ˆμ°¬κ°€μ§€μ˜ λ°©λ²•μœΌλ‘œ μ•„λž˜μ˜ λ¬Έμ œλ„ ν’€μ–΄λ³΄μž.

example.

\[\mathbb{Z} \times \mathbb{Z} / <(1, 1)> \; \cong \; ?\]

Sol.

$<(1, 1)>$둜 μƒμ„±λ˜λŠ” left coset듀을 μƒκ°ν•΄λ³΄μž. 그러면

  • …
  • $\Delta = -1$: …, (-1, 0), (0, 1), (1, 2), …
  • $\Delta = \;\;\; 0$: …, (-1, -1), (0, 0), (1, 1), …
  • $\Delta = +1$: …, (0, -1), (1, 0), (2, 1), …
  • …

그러면, λŒ€λž΅ 이 묢음이 $\mathbb{Z}$ 만큼 μ‘΄μž¬ν•˜κ²Œ λœλ‹€.

λ”°λΌμ„œ

\[\mathbb{Z} \times \mathbb{Z} / <(1, 1)> \; \cong \; \mathbb{Z}\]

$\blacksquare$