Factor Group - Application
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Theorem.
Let $H \times K$ be a direct product of group $H$, $K$.
Then, $\overline{H} = H \times \{ e_K \}$ is a normal subgroup of $H \times K$.
μ΄λ,
\[H \times K / {\overline{H}} = H \times K / H \times \{ e_K \} \cong K\]proof.
2λ²μ§Έ λͺ μ λ§ μ¦λͺ νκ² λ€.
Homomorphism $\phi$λ₯Ό νλ μ μνμ.
\[\begin{aligned} \phi: H \times K & \longrightarrow K \\ (h, k) & \longmapsto k \end{aligned}\]μ΄λ, homomorphismμ kernelμ μκ°ν΄λ³΄μ. κ·Έλ¬λ©΄, $\ker \phi = (H, e_K)$μ΄λ€.
FHTμ λ°λ₯΄λ©΄,
\[H \times K / {\ker \phi} \cong \phi[ H \times K ]\]μ΄λ€.
λ°λΌμ
\[\begin{aligned} H \times K / \ker \phi &\cong \phi[H \times K] \\ H \times K / (H, e_K) = H \times K / \overline{H} &\cong K \end{aligned}\]$\blacksquare$
Theorem.
A factor group of cyclic is also cyclic.
μμ£Όμμ£Όμμ£Ό μ€μν λ¬Έμ λ€!!
example.
Sol.
λ¨Όμ μ£Όμ΄μ§ factor group $\mathbb{Z}_4 \times \mathbb{Z}_6 / <(2, 3)>$μ μμλ₯Ό ꡬν΄λ³΄μ.
\[\lvert \mathbb{Z}_4 \times \mathbb{Z}_6 / <(2, 3)> \rvert = 24/2 = 12\]μ§μ κ³μ°μ ν΄λ³΄λ©΄, $\lvert <(2, 3)> \rvert = 2$μμ νμΈν μ μλ€.
μ΄ μ΄νμλ cyclic groupμΈ $\mathbb{Z}_4 \times \mathbb{Z}_6$μ factor groupμ΄λ―λ‘ $\mathbb{Z}_4 \times \mathbb{Z}_6 / <(2, 3)>$ μμ cyclic groupμ΄μ΄μΌ νλ€.
μ΄λ, βF.T. of f.g. abelianβμ νμ©ν΄ μμκ° 12μΈ Cyclic Grouopμ μ°Ύμ보면 μλμ λ Groupμ΄ λλ€.
- $\mathbb{Z}_3 \times \mathbb{Z}_4$
- $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$
μ΄λ²μλ $H = <(2, 3)>$μ left cosetλ€ μ€ νλλ₯Ό; μ§μ μ΄ν΄λ³΄μ.
$(1, 0) + H \in \mathbb{Z}_4 \times \mathbb{Z}_6 / <(2, 3)>$
$(1, 0) + H$μ μμλ
- $\left((1, 0) + H\right) + \left((1, 0) + H\right) = \left((2, 0) + H\right) \ne H$
- $(3, 0) + H \ne H$
- $(4, 0) + H = H$
λ°λΌμ $\lvert (1, 0) + H \rvert = 4$μ΄λ€.
μ΄μ μμμ βF.T. of f.g. abelianβμμ μ»μ λ cyclic group μ€ μμ 4μ μμλ₯Ό κ°λ groupμ μ°Ύμ보μ.
$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$λ μμκ° 1, 2, 3, 6μΈ μμλ§μ κ°λλ€. λ°λΌμ μ΄ cyclic groupμ μ°λ¦¬κ° μ°Ύλ λνμΈ Groupμ΄ μλλ€!
$\mathbb{Z}_3 \times \mathbb{Z}_4$μ κ²½μ°, μμκ° 4μΈ μμλ₯Ό κ°λλ€! λ°λΌμ $\mathbb{Z}_3 \times \mathbb{Z}_4$κ° μ°λ¦¬κ° μ°Ύκ³ μ νλ λνμΈ Cyclic Groupμ΄λ€!!
λ°λΌμ
\[\mathbb{Z}_4 \times \mathbb{Z}_6 / <(2, 3)> \; \cong \; \mathbb{Z}_3 \times \mathbb{Z}_4\]$\blacksquare$
λ§μ°¬κ°μ§μ λ°©λ²μΌλ‘ μλμ λ¬Έμ λ νμ΄λ³΄μ.
example.
Sol.
$<(1, 1)>$λ‘ μμ±λλ left cosetλ€μ μκ°ν΄λ³΄μ. κ·Έλ¬λ©΄
- β¦
- $\Delta = -1$: β¦, (-1, 0), (0, 1), (1, 2), β¦
- $\Delta = \;\;\; 0$: β¦, (-1, -1), (0, 0), (1, 1), β¦
- $\Delta = +1$: β¦, (0, -1), (1, 0), (2, 1), β¦
- β¦
κ·Έλ¬λ©΄, λλ΅ μ΄ λ¬Άμμ΄ $\mathbb{Z}$ λ§νΌ μ‘΄μ¬νκ² λλ€.
λ°λΌμ
\[\mathbb{Z} \times \mathbb{Z} / <(1, 1)> \; \cong \; \mathbb{Z}\]$\blacksquare$