Fundamental Homomorphism Theorem
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
FHTλ₯Ό μ΄ν΄λ³΄κΈ° μ μ κ°λ¨ν Factor Group Homomorphismμ λν΄ μ΄ν΄λ³΄μ.
Canonical HomomorphismPermalink
Theorem.
Let
Then,
proof.
μ¦λͺ μ μ λ§ κ°λ¨νλ€.
(1)
μ¦λͺ μ΄ λ무 μ¬μμ μ¬κΈ°μμλ μ-λ΅νλ€.
μ£Όλͺ©ν μ μ μ΄ homormophism
βCanonical homormophismβμ΄λΌλ μ΄λ¦μ΄λ€!
μ΄μ Homo-morphism ννΈμμ κ°μ₯ μ€μνκ³ , μμ©λ λ§μ΄ λλ FHTμ λν΄ μ΄ν΄λ³΄μ!
Theorem. Fundamental Homormophism Theorem (FHT)
Let
Then,
is a group.
proof.
1.
(1) closed under opr.
(2) associativity
μ-λ΅
(3) identity
(4) inverse

2.
λ Groupμ λνμ 보μ΄κΈ° μν΄ mapping
(1)
λ°λΌμ
(2)
(i)
For
(ii)
Supp.
well-definednessλ μμ§ λ§κ³ νμΈνμ!
(3)
Supp.