2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

3 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜ํ˜„๋Œ€๋Œ€์ˆ˜1โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)


FHT๋ฅผ ์‚ดํŽด๋ณด๊ธฐ ์ „์— ๊ฐ„๋‹จํ•œ Factor Group Homomorphism์— ๋Œ€ํ•ด ์‚ดํŽด๋ณด์ž.

Canonical HomomorphismPermalink

Theorem.

Let HโŠดG, and define a mapping ฮณ:GโŸถG/H where ฮณ(x)=xH.

Then, ฮณ is a group homormophism, with kerโกฮณ=H.

proof.

์ฆ๋ช…์€ ์ •๋ง ๊ฐ„๋‹จํ•˜๋‹ค.

(1) ฮณ๊ฐ€ homomorphism์ž„์„ ๋ณด์ด๊ณ , (2) ฮณ์˜ kernel์ด H์ž„์„ ๋ณด์ด๋ฉด ๋œ๋‹ค.

์ฆ๋ช…์ด ๋„ˆ๋ฌด ์‰ฌ์›Œ์„œ ์—ฌ๊ธฐ์—์„œ๋Š” ์ƒ-๋žตํ•œ๋‹ค.


์ฃผ๋ชฉํ•  ์ ์€ ์ด homormophism ฮณ์— ์ด๋ฆ„์ด ๋ถ™์—ˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

โ€œCanonical homormophismโ€œ์ด๋ผ๋Š” ์ด๋ฆ„์ด๋‹ค!



์ด์ œ Homo-morphism ํŒŒํŠธ์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•˜๊ณ , ์‘์šฉ๋„ ๋งŽ์ด ๋˜๋Š” FHT์— ๋Œ€ํ•ด ์‚ดํŽด๋ณด์ž!

Theorem. Fundamental Homormophism Theorem (FHT)

Let ฯ•:GโŸถGโ€ฒ be a group homo-.

Then,

  1. ฯ•[G] is a group.
  2. G/kerโกฯ•โ‰…ฯ•[G]


proof.

1. ฯ•[G] is a group

ฯ•[G]๊ฐ€ Group์˜ ์„ฑ์งˆ์„ ์ž˜ ๋งŒ์กฑํ•˜๋Š”์ง€ ํ™•์ธํ•˜๋ฉด ๋œ๋‹ค.

(1) closed under opr.

ฯ•(g1)โ‹…ฯ•(g2)=ฯ•(g1g2)

(2) associativity

์ƒ-๋žต

(3) identity

ฯ•(e)=eโ€ฒ is identity in ฯ•[G].

(4) inverse

(ฯ•(g))โˆ’1=ฯ•(gโˆ’1)โˆˆฯ•[G]

2. G/kerโกฯ•โ‰…ฯ•[G]

๋‘ Group์˜ ๋™ํ˜•์„ ๋ณด์ด๊ธฐ ์œ„ํ•ด mapping ฮผ๋ฅผ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ํ•˜์ž.

ฮผ:G/kerโกฯ•โŸถฯ•[G]g(kerโกฯ•)โŸผฯ•(g)

ฮผ๊ฐ€ iso-morphism์ธ์ง€ ํ™•์ธํ•˜์ž!


(1) ฮผ is a homo-.

ฮผ(g1Kโ‹…g2K)=ฮผ(g1g2K)=ฯ•(g1g2)ฮผ(g1K)โ‹…ฮผ(g2K)=ฯ•(g1)โ‹…ฯ•(g2)=ฯ•(g1g2)

๋”ฐ๋ผ์„œ ฮผ๋Š” Homo-์ด๋‹ค.


(2) ฮผ is 1-1 & onto

(i) ฮผ is onto

For ฯ•(a)โˆˆฯ•[G], thereโ€™s an inverse image of it. It is a(kerโกฯ•).

(ii)

Supp. ฮผ(aK)=ฮผ(bK), Then

ฮผ(aK)=ฮผ(bK)โŸนฯ•(a)=ฯ•(b)โŸนฯ•(b)โˆ’1ฯ•(a)=eโ€ฒโŸนฯ•(bโˆ’1a)=eโ€ฒโŸนbโˆ’1aโˆˆK=kerโกฯ•โŸนbโˆ’1aK=KโŸนaK=bK


well-definedness๋„ ์žŠ์ง€ ๋ง๊ณ  ํ™•์ธํ•˜์ž!

(3) ฮผ is well-defined.

Supp. aK=bK, Then

aK=bKโŸนbโˆ’1aK=KโŸนbโˆ’1aโˆˆK=kerโกฯ•โŸนฯ•(bโˆ’1a)=eโ€ฒโŸนฯ•(bโˆ’1)ฯ•(a)=eโ€ฒโŸนฯ•(a)=ฯ•(b)โŸนฮผ(aK)=ฯ•(a)=ฯ•(b)=ฮผ(bK)

ApplicationPermalink


ReferencePermalink