2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

3 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


FHTλ₯Ό μ‚΄νŽ΄λ³΄κΈ° 전에 κ°„λ‹¨ν•œ Factor Group Homomorphism에 λŒ€ν•΄ μ‚΄νŽ΄λ³΄μž.

Canonical Homomorphism

Theorem.

Let $H \trianglelefteq G$, and define a mapping $\gamma: G \longrightarrow G/H$ where $\gamma(x) = xH$.

Then, $\gamma$ is a group homormophism, with $\ker \gamma = H$.

proof.

증λͺ…은 정말 κ°„λ‹¨ν•˜λ‹€.

(1) $\gamma$κ°€ homomorphismμž„μ„ 보이고, (2) $\gamma$의 kernel이 $H$μž„μ„ 보이면 λœλ‹€.

증λͺ…이 λ„ˆλ¬΄ μ‰¬μ›Œμ„œ μ—¬κΈ°μ—μ„œλŠ” 생-λž΅ν•œλ‹€.


μ£Όλͺ©ν•  점은 이 homormophism $\gamma$에 이름이 λΆ™μ—ˆλ‹€λŠ” 것이닀.

β€œCanonical homormophismβ€œμ΄λΌλŠ” 이름이닀!



이제 Homo-morphism νŒŒνŠΈμ—μ„œ κ°€μž₯ μ€‘μš”ν•˜κ³ , μ‘μš©λ„ 많이 λ˜λŠ” FHT에 λŒ€ν•΄ μ‚΄νŽ΄λ³΄μž!

Theorem. Fundamental Homormophism Theorem (FHT)

Let $\phi: G \longrightarrow G’$ be a group homo-.

Then,

  1. $\phi[G]$ is a group.
  2. $G / {\ker \phi} \cong \phi[G]$


proof.

1. $\phi[G]$ is a group

$\phi[G]$κ°€ Group의 μ„±μ§ˆμ„ 잘 λ§Œμ‘±ν•˜λŠ”μ§€ ν™•μΈν•˜λ©΄ λœλ‹€.

(1) closed under opr.

$\phi(g_1) \cdot \phi(g_2) = \phi(g_1 g_2)$

(2) associativity

생-랡

(3) identity

$\phi(e) = e’$ is identity in $\phi[G]$.

(4) inverse

$\left(\phi(g)\right)^{-1} = \phi(g^{-1}) \in \phi[G]$

2. $G / {\ker \phi} \cong \phi[G]$

두 Group의 λ™ν˜•μ„ 보이기 μœ„ν•΄ mapping $\mu$λ₯Ό μ•„λž˜μ™€ 같이 μ •μ˜ν•˜μž.

\[\begin{aligned} \mu: G / {\ker \phi} & \longrightarrow \phi[G] \\ g(\ker \phi) & \longmapsto \phi(g) \end{aligned}\]

$\mu$κ°€ iso-morphism인지 ν™•μΈν•˜μž!


(1) $\mu$ is a homo-.

\[\begin{aligned} \mu (g_1 K \cdot g_2 K) &= \mu (g_1 g_2 K) = \phi(g_1 g_2) \\ \mu (g_1 K) \cdot \mu (g_2 K) &= \phi(g_1) \cdot \phi(g_2) = \phi(g_1 g_2) \end{aligned}\]

λ”°λΌμ„œ $\mu$λŠ” Homo-이닀.


(2) $\mu$ is 1-1 & onto

(i) $\mu$ is onto

For $\phi(a) \in \phi[G]$, there’s an inverse image of it. It is $a(\ker \phi)$.

(ii)

Supp. $\mu(aK) = \mu(bK)$, Then

\[\begin{aligned} \mu(aK) = \mu(bK) &\implies \phi(a) = \phi(b) \\ &\implies \phi(b)^{-1} \phi(a) = e' \\ &\implies \phi(b^{-1} a) = e' \\ &\implies b^{-1} a \in K = \ker \phi \\ &\implies b^{-1}a K = K \\ &\implies aK = bK \end{aligned}\]


well-definedness도 μžŠμ§€ 말고 ν™•μΈν•˜μž!

(3) $\mu$ is well-defined.

Supp. $aK = bK$, Then

\[\begin{aligned} aK = bK &\implies b^{-1} a K = K \\ &\implies b^{-1} a \in K = \ker \phi \\ &\implies \phi(b^{-1}a) = e' \\ &\implies \phi(b^{-1}) \phi(a) = e' \\ &\implies \phi(a) = \phi(b) \\ &\implies \mu(aK) = \phi(a) = \phi(b) = \mu(bK) \end{aligned}\]

Application


Reference