Fundamental Homomorphism Theorem
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
FHTλ₯Ό μ΄ν΄λ³΄κΈ° μ μ κ°λ¨ν Factor Group Homomorphismμ λν΄ μ΄ν΄λ³΄μ.
Canonical Homomorphism
Theorem.
Let $H \trianglelefteq G$, and define a mapping $\gamma: G \longrightarrow G/H$ where $\gamma(x) = xH$.
Then, $\gamma$ is a group homormophism, with $\ker \gamma = H$.
proof.
μ¦λͺ μ μ λ§ κ°λ¨νλ€.
(1) $\gamma$κ° homomorphismμμ 보μ΄κ³ , (2) $\gamma$μ kernelμ΄ $H$μμ 보μ΄λ©΄ λλ€.
μ¦λͺ μ΄ λ무 μ¬μμ μ¬κΈ°μμλ μ-λ΅νλ€.
μ£Όλͺ©ν μ μ μ΄ homormophism $\gamma$μ μ΄λ¦μ΄ λΆμλ€λ κ²μ΄λ€.
βCanonical homormophismβμ΄λΌλ μ΄λ¦μ΄λ€!
μ΄μ Homo-morphism ννΈμμ κ°μ₯ μ€μνκ³ , μμ©λ λ§μ΄ λλ FHTμ λν΄ μ΄ν΄λ³΄μ!
Theorem. Fundamental Homormophism Theorem (FHT)
Let $\phi: G \longrightarrow Gβ$ be a group homo-.
Then,
- $\phi[G]$ is a group.
- $G / {\ker \phi} \cong \phi[G]$
proof.
1. $\phi[G]$ is a group
$\phi[G]$κ° Groupμ μ±μ§μ μ λ§μ‘±νλμ§ νμΈνλ©΄ λλ€.
(1) closed under opr.
$\phi(g_1) \cdot \phi(g_2) = \phi(g_1 g_2)$
(2) associativity
μ-λ΅
(3) identity
$\phi(e) = eβ$ is identity in $\phi[G]$.
(4) inverse
$\left(\phi(g)\right)^{-1} = \phi(g^{-1}) \in \phi[G]$
2. $G / {\ker \phi} \cong \phi[G]$
λ Groupμ λνμ 보μ΄κΈ° μν΄ mapping $\mu$λ₯Ό μλμ κ°μ΄ μ μνμ.
\[\begin{aligned} \mu: G / {\ker \phi} & \longrightarrow \phi[G] \\ g(\ker \phi) & \longmapsto \phi(g) \end{aligned}\]$\mu$κ° iso-morphismμΈμ§ νμΈνμ!
(1) $\mu$ is a homo-.
\[\begin{aligned} \mu (g_1 K \cdot g_2 K) &= \mu (g_1 g_2 K) = \phi(g_1 g_2) \\ \mu (g_1 K) \cdot \mu (g_2 K) &= \phi(g_1) \cdot \phi(g_2) = \phi(g_1 g_2) \end{aligned}\]λ°λΌμ $\mu$λ Homo-μ΄λ€.
(2) $\mu$ is 1-1 & onto
(i) $\mu$ is onto
For $\phi(a) \in \phi[G]$, thereβs an inverse image of it. It is $a(\ker \phi)$.
(ii)
Supp. $\mu(aK) = \mu(bK)$, Then
\[\begin{aligned} \mu(aK) = \mu(bK) &\implies \phi(a) = \phi(b) \\ &\implies \phi(b)^{-1} \phi(a) = e' \\ &\implies \phi(b^{-1} a) = e' \\ &\implies b^{-1} a \in K = \ker \phi \\ &\implies b^{-1}a K = K \\ &\implies aK = bK \end{aligned}\]well-definednessλ μμ§ λ§κ³ νμΈνμ!
(3) $\mu$ is well-defined.
Supp. $aK = bK$, Then
\[\begin{aligned} aK = bK &\implies b^{-1} a K = K \\ &\implies b^{-1} a \in K = \ker \phi \\ &\implies \phi(b^{-1}a) = e' \\ &\implies \phi(b^{-1}) \phi(a) = e' \\ &\implies \phi(a) = \phi(b) \\ &\implies \mu(aK) = \phi(a) = \phi(b) = \mu(bK) \end{aligned}\]