2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

3 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


FHTλ₯Ό μ‚΄νŽ΄λ³΄κΈ° 전에 κ°„λ‹¨ν•œ Factor Group Homomorphism에 λŒ€ν•΄ μ‚΄νŽ΄λ³΄μž.

Canonical HomomorphismPermalink

Theorem.

Let H⊴G, and define a mapping γ:G⟢G/H where γ(x)=xH.

Then, γ is a group homormophism, with ker⁑γ=H.

proof.

증λͺ…은 정말 κ°„λ‹¨ν•˜λ‹€.

(1) Ξ³κ°€ homomorphismμž„μ„ 보이고, (2) γ의 kernel이 Hμž„μ„ 보이면 λœλ‹€.

증λͺ…이 λ„ˆλ¬΄ μ‰¬μ›Œμ„œ μ—¬κΈ°μ—μ„œλŠ” 생-λž΅ν•œλ‹€.


μ£Όλͺ©ν•  점은 이 homormophism γ에 이름이 λΆ™μ—ˆλ‹€λŠ” 것이닀.

β€œCanonical homormophismβ€œμ΄λΌλŠ” 이름이닀!



이제 Homo-morphism νŒŒνŠΈμ—μ„œ κ°€μž₯ μ€‘μš”ν•˜κ³ , μ‘μš©λ„ 많이 λ˜λŠ” FHT에 λŒ€ν•΄ μ‚΄νŽ΄λ³΄μž!

Theorem. Fundamental Homormophism Theorem (FHT)

Let Ο•:G⟢Gβ€² be a group homo-.

Then,

  1. Ο•[G] is a group.
  2. G/ker⁑ϕ≅ϕ[G]


proof.

1. Ο•[G] is a group

Ο•[G]κ°€ Group의 μ„±μ§ˆμ„ 잘 λ§Œμ‘±ν•˜λŠ”μ§€ ν™•μΈν•˜λ©΄ λœλ‹€.

(1) closed under opr.

Ο•(g1)β‹…Ο•(g2)=Ο•(g1g2)

(2) associativity

생-랡

(3) identity

Ο•(e)=eβ€² is identity in Ο•[G].

(4) inverse

(Ο•(g))βˆ’1=Ο•(gβˆ’1)βˆˆΟ•[G]

2. G/ker⁑ϕ≅ϕ[G]

두 Group의 λ™ν˜•μ„ 보이기 μœ„ν•΄ mapping ΞΌλ₯Ό μ•„λž˜μ™€ 같이 μ •μ˜ν•˜μž.

ΞΌ:G/kerβ‘Ο•βŸΆΟ•[G]g(ker⁑ϕ)βŸΌΟ•(g)

ΞΌκ°€ iso-morphism인지 ν™•μΈν•˜μž!


(1) ΞΌ is a homo-.

ΞΌ(g1Kβ‹…g2K)=ΞΌ(g1g2K)=Ο•(g1g2)ΞΌ(g1K)β‹…ΞΌ(g2K)=Ο•(g1)β‹…Ο•(g2)=Ο•(g1g2)

λ”°λΌμ„œ ΞΌλŠ” Homo-이닀.


(2) ΞΌ is 1-1 & onto

(i) ΞΌ is onto

For Ο•(a)βˆˆΟ•[G], there’s an inverse image of it. It is a(ker⁑ϕ).

(ii)

Supp. ΞΌ(aK)=ΞΌ(bK), Then

ΞΌ(aK)=ΞΌ(bK)βŸΉΟ•(a)=Ο•(b)βŸΉΟ•(b)βˆ’1Ο•(a)=eβ€²βŸΉΟ•(bβˆ’1a)=eβ€²βŸΉbβˆ’1a∈K=kerβ‘Ο•βŸΉbβˆ’1aK=K⟹aK=bK


well-definedness도 μžŠμ§€ 말고 ν™•μΈν•˜μž!

(3) ΞΌ is well-defined.

Supp. aK=bK, Then

aK=bK⟹bβˆ’1aK=K⟹bβˆ’1a∈K=kerβ‘Ο•βŸΉΟ•(bβˆ’1a)=eβ€²βŸΉΟ•(bβˆ’1)Ο•(a)=eβ€²βŸΉΟ•(a)=Ο•(b)⟹μ(aK)=Ο•(a)=Ο•(b)=ΞΌ(bK)

ApplicationPermalink


ReferencePermalink