2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

2 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


"Any subgroup of index 2 is a normal subgroup."


Theorem.

Let $H \le G$,

If $\lvert G \rvert / \lvert H \rvert = 2$,

Then $H \trianglelefteq G$.


proof.

The set of left cosets of $H$ in $G$ forms a partition of $G$.

\[\begin{equation} G = H {\cup\mkern-11.5mu\cdot\mkern5mu} {g_i H} \end{equation}\]

Then,

\[\begin{aligned} \lvert G \rvert &= \sum_{i \in \Lambda} \lvert {g_i H} \rvert \\ & = n \times \lvert H \rvert \end{aligned}\]

λ˜ν•œ, μ •λ¦¬μ—μ„œ $\lvert G \rvert / \lvert H \rvert = 2$라고 ν–ˆμœΌλ―€λ‘œ

\[\lvert \Lambda \rvert = \lvert G \rvert / \lvert H \rvert = 2 = n\]

즉, Group $G$κ°€ 2개의 left coset으둜 뢄할됨을 μ˜λ―Έν•œλ‹€.

그럼 $G/H$λŠ”

\[G/H = \{ H, \; gH \} \quad \textrm{for some} \; g \in G \setminus H\]

κ°€ λœλ‹€.

μ΄λ•Œ, Eq. (1)μ—μ„œ left coset은 distjoint union으둜 $G$λ₯Ό λΆ„ν• ν•œλ‹€.

이 뢄할은 right coset에 λŒ€ν•΄μ„œλ„ λ§ˆμ°¬κ°€μ§€ μ΄λ―€λ‘œ

\[\begin{equation} G = H {\cup\mkern-11.5mu\cdot\mkern5mu} {Hg} \end{equation}\]

μ΄λ•Œ, Eq. (1)κ³Ό Eq. (2)λ₯Ό λΉ„κ΅ν•΄λ³΄μž.

$g \notin H$μ΄λ―€λ‘œ $H \ne Hg$이닀. (μ—°μ‚°μ˜ λ‹«νž˜μ„± μœ„λ°°)

λ”°λΌμ„œ $gH = Hg$ for some $g \in G \setminus H$이닀.

μ΄λ•Œ, $g \in H$라면, $gH = H = Hg$μ΄λ―€λ‘œ 두 상황을 ν•©μ³μ„œ μ§„μˆ ν•˜λ©΄ μ•„λž˜μ™€ κ°™λ‹€.

\[gH = Hg \quad \forall g \in G\]

이것은 $H$κ°€ Normal subgroupμž„μ„ μ˜λ―Έν•œλ‹€! $\blacksquare$



ν™•μ •μ μœΌλ‘œ Normal Subgroup을 찾을 수 μžˆλŠ” 이 μ •λ¦¬λŠ” Symmetric Group $S_n$κ³Ό Alternating Group $A_n$ 사이 관계λ₯Ό λͺ…ν™•νžˆ μ§„μˆ ν•œλ‹€!

$A_n$ is even permutation group. $A_n = \dfrac{\lvert S_n \rvert}{2}$ λ”°λΌμ„œ $A_n \trianglelefteq S_n$