index-2 Group is normal
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Theorem.
Let $H \le G$,
If $\lvert G \rvert / \lvert H \rvert = 2$,
Then $H \trianglelefteq G$.
proof.
The set of left cosets of $H$ in $G$ forms a partition of $G$.
\[\begin{equation} G = H {\cup\mkern-11.5mu\cdot\mkern5mu} {g_i H} \end{equation}\]Then,
\[\begin{aligned} \lvert G \rvert &= \sum_{i \in \Lambda} \lvert {g_i H} \rvert \\ & = n \times \lvert H \rvert \end{aligned}\]λν, μ 리μμ $\lvert G \rvert / \lvert H \rvert = 2$λΌκ³ νμΌλ―λ‘
\[\lvert \Lambda \rvert = \lvert G \rvert / \lvert H \rvert = 2 = n\]μ¦, Group $G$κ° 2κ°μ left cosetμΌλ‘ λΆν λ¨μ μλ―Ένλ€.
κ·ΈλΌ $G/H$λ
\[G/H = \{ H, \; gH \} \quad \textrm{for some} \; g \in G \setminus H\]κ° λλ€.
μ΄λ, Eq. (1)μμ left cosetμ distjoint unionμΌλ‘ $G$λ₯Ό λΆν νλ€.
μ΄ λΆν μ right cosetμ λν΄μλ λ§μ°¬κ°μ§ μ΄λ―λ‘
\[\begin{equation} G = H {\cup\mkern-11.5mu\cdot\mkern5mu} {Hg} \end{equation}\]μ΄λ, Eq. (1)κ³Ό Eq. (2)λ₯Ό λΉκ΅ν΄λ³΄μ.
$g \notin H$μ΄λ―λ‘ $H \ne Hg$μ΄λ€. (μ°μ°μ λ«νμ± μλ°°)
λ°λΌμ $gH = Hg$ for some $g \in G \setminus H$μ΄λ€.
μ΄λ, $g \in H$λΌλ©΄, $gH = H = Hg$μ΄λ―λ‘ λ μν©μ ν©μ³μ μ§μ νλ©΄ μλμ κ°λ€.
\[gH = Hg \quad \forall g \in G\]μ΄κ²μ $H$κ° Normal subgroupμμ μλ―Ένλ€! $\blacksquare$
νμ μ μΌλ‘ Normal Subgroupμ μ°Ύμ μ μλ μ΄ μ 리λ Symmetric Group $S_n$κ³Ό Alternating Group $A_n$ μ¬μ΄ κ΄κ³λ₯Ό λͺ νν μ§μ νλ€!