2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

5 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


Definition. Ring homomorphism

Let R, Rβ€² be rings

A map Ο•:R⟢Rβ€² is a ring homomorphism

  • Ο•(a+b)=Ο•(a)+Ο•(b); group homomorphism
  • Ο•(aβ‹…b)=Ο•(a)β‹…Ο•(b); semi-group homomorphism


Example. Projection homomorphism

Let R1, R2, …, Rn be rings.

The map Ο€i:R1Γ—R2Γ—β‹―Γ—Rn⟢Ri defined by Ο€i(r1,r2,…,rn)=ri is a homormophism.

β€œprojection onto the i-th component”



Theorem.

Let Ο• be a homo- of a ring R onto a ring Rβ€².

1. Ο•(0R)=0Rβ€²

2. Ο•(βˆ’a)=βˆ’Ο•(a)

3. If S≀R, then Ο•(S)≀Rβ€²

4. If S′≀Rβ€², then Ο•βˆ’1(Sβ€²)≀R

5. If 1∈R, then Ο•(1) is unity of Ο•(R)

proof.

3번 λͺ…μ œλ§Œ 증λͺ…을 ν•΄λ³΄μž.

3번 λͺ…μ œμ— λŒ€ν•œ 증λͺ…

(1) Closure

For Ο•(x),Ο•(y)βˆˆΟ•(R),

Ο•(x)+Ο•(y)=Ο•(x+y)

Ο•(x)β‹…Ο•(y)=Ο•(xβ‹…y)

* comment: μ²˜μŒμ— x,yβˆˆΟ•(R)둜 μ‹œμž‘ν•΄μ„œ 증λͺ…을 λ³΅μž‘ν•˜κ²Œ μƒκ°ν–ˆλ‹€. ϕ와 ν•¨κ»˜ λ°”λ‘œ μ›μ†Œ Ο•(x),Ο•(y)λ₯Ό 작으면 정말 μ‰½κ²Œ 증λͺ…ν•  수 μžˆλŠ” λͺ…μ œλ‹€!



Definition. kernel of ring homomorphism

Let Ο•:R⟢Rβ€² be a ring homomorphism.

The sub-ring Ο•βˆ’1(0β€²)={r∈Rβˆ£Ο•(r)=0β€²}

is the kernel of Ο•; ker⁑ϕ.


Example.

R≇C as a ring isomorphism.



IdealPermalink

Theorem.

Let H be a sub-ring of ring R; H≀R.

Multiplication of additive cosets of H is well-defined

(a+H)(b+H):=ab+H

⟺ aHβŠ†H, HbβŠ†H for all a,b∈R.

proof.

(⟸)

(⟸) Supp. ah,hb∈H for all a,b∈R and all h∈H.

Let h1,h2∈H so that a+h1, b+h2 are representatives of cost a+H, b+H containing a and b.

Then,

(a+h1)(b+h2)=ab+ah2+h1b+h1h2

처음 가정에 μ˜ν•΄ ah2,h1b,h1h2∈Hμ΄λ―€λ‘œ (a+h1)(b+h2)∈(ab+H)이닀. β—Ό

(⟹)

(⟹) Supp. multiplication of cosets is well-defined.

Let a∈R, and consider coset product (a+H)(0+H).

Then,

(a+H)(0+H)=a0+aH+H0+HH=0+aH+0+H=aH+H=a0+H=H(by definition of operation)

μœ„μ˜ μ‹μ—μ„œ aHλŠ” H의 μ›μ†Œκ°€ λ˜μ–΄μ•Ό ν•œλ‹€.

λ”°λΌμ„œ aHβŠ†Hκ°€ λœλ‹€!

λ§ˆμ°¬κ°€μ§€λ‘œ λ°˜λŒ€λ‘œ H(b+H)λ₯Ό μ§„ν–‰ν•˜λ©΄ HbβŠ†Hλ₯Ό 확인할 수 μžˆλ‹€.

β—Ό


Group Theory에선 Normal subgroup이 Factor group의 연산을 잘 μ •μ˜ν•˜λŠ” 데에 μ€‘μš”ν•œ 쑰건이 λ˜μ—ˆλ‹€.

λ§ˆμ°¬κ°€μ§€λ‘œ Ring Theoryμ—μ„œλ„ 쒋은 Normal sub-ring을 골라 Factor Ring을 μ •μ˜ν•  수 μžˆλ‹€!!

λ°”λ‘œ μœ„μ˜ μ •λ¦¬λŠ” Factor Ring 연산이 well-defined 되기 μœ„ν•΄μ„œ

for a,b∈R

  • aHβŠ†H
  • HbβŠ†H

λ₯Ό λ§Œμ‘±ν•΄μ•Ό 함을 μ§„μˆ ν•œλ‹€.


Definition. Ideal

A subgroup N of a ring R is an β€œideal”, when

aNβŠ†NandNbβŠ†Nβˆ€a,b∈R

이 subgroup N을 ideal I둜 ν‘œν˜„ν•˜μž.


Definition. Factor Ring

Let I be an ideal of a ring R.

Then R/I is a ring.

β€» Note: Ideal I의 μ •μ˜μƒ (I,+)⊴(R,+)이닀.


β€» TODO: Check R/I is a ring

  • the set of additive left coset is abelian?
  • the set of additive left coset is semi-group?
  • Associativity?
  • Distributive Law?



Theorem. canonical homomorphism on ring

Let I⊴R, then

Ο•:R⟢R/Ir⟼rI


Theorem. FHT on ring

R/ker⁑ϕ≅ϕ[R]