Factor Rings & Ideals
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Definition. Ring homomorphism
Let $R$, $Rβ$ be rings
A map $\phi: R \longrightarrow Rβ$ is a ring homomorphism
- $\phi(a+b) = \phi(a) + \phi(b)$; group homomorphism
- $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$; semi-group homomorphism
Example. Projection homomorphism
Let $R_1$, $R_2$, β¦, $R_n$ be rings.
The map $\pi_i: R_1 \times R_2 \times \cdots \times R_n \longrightarrow R_i$ defined by $\pi_i (r_1, r_2, \dots, r_n) = r_i$ is a homormophism.
βprojection onto the $i$-th componentβ
Theorem.
Let $\phi$ be a homo- of a ring $R$ onto a ring $Rβ$.
1. \(\phi(0_{R}) = 0_{R'}\)
2. $\phi(-a) = -\phi(a)$
3. If $S \le R$, then $\phi(S) \le Rβ$
4. If $Sβ \le Rβ$, then $\phi^{-1} (Sβ) \le R$
5. If $1 \in R$, then $\phi(1)$ is unity of $\phi(R)$
proof.
3λ² λͺ μ λ§ μ¦λͺ μ ν΄λ³΄μ.
3λ² λͺ μ μ λν μ¦λͺ
(1) Closure
For $\phi(x), \phi(y) \in \phi(R)$,
$\phi(x) + \phi(y) = \phi(x+y)$
$\phi(x)\cdot\phi(y) = \phi(x \cdot y)$
* comment: μ²μμ $x, y \in \phi(R)$λ‘ μμν΄μ μ¦λͺ μ 볡μ‘νκ² μκ°νλ€. $\phi$μ ν¨κ» λ°λ‘ μμ $\phi(x), \phi(y)$λ₯Ό μ‘μΌλ©΄ μ λ§ μ½κ² μ¦λͺ ν μ μλ λͺ μ λ€!
Definition. kernel of ring homomorphism
Let $\phi: R \longrightarrow Rβ$ be a ring homomorphism.
The sub-ring $\phi^{-1} (0β) = \{ r \in R \mid \phi(r) = 0β \}$
is the kernel of $\phi$; $\ker \phi$.
Example.
$\mathbb{R} \not\cong \mathbb{C}$ as a ring isomorphism.
Ideal
Theorem.
Let $H$ be a sub-ring of ring $R$; $H \le R$.
Multiplication of additive cosets of $H$ is well-defined
\[(a + H)(b + H) := ab + H\]$\iff$ $aH \subseteq H$, $Hb \subseteq H$ for all $a, b \in R$.
proof.
($\impliedby$)
($\impliedby$) Supp. $ah, hb \in H$ for all $a, b \in R$ and all $h \in H$.
Let $h_1, h_2 \in H$ so that $a + h_1$, $b + h_2$ are representatives of cost $a+H$, $b+H$ containing $a$ and $b$.
Then,
\[(a+h_1)(b+h_2) = ab + ah_2 + h_1 b + h_1 h_2\]μ²μ κ°μ μ μν΄ $ah_2, h_1 b, h_1 h_2 \in H$μ΄λ―λ‘ $(a+h_1)(b+h_2) \in (ab + H)$μ΄λ€. $\blacksquare$
($\implies$)
($\implies$) Supp. multiplication of cosets is well-defined.
Let $a \in R$, and consider coset product $(a+H)(0 + H)$.
Then,
\[\begin{aligned} (a + H)(0 + H) &= a0 + aH + H0 + HH \\ &= 0 + aH + 0 + H \\ &= aH + H \\ &= a0 + H = H \quad (\textrm{by definition of operation}) \end{aligned}\]μμ μμμ $aH$λ $H$μ μμκ° λμ΄μΌ νλ€.
λ°λΌμ $aH \subseteq H$κ° λλ€!
λ§μ°¬κ°μ§λ‘ λ°λλ‘ $H(b+H)$λ₯Ό μ§ννλ©΄ $Hb \subseteq H$λ₯Ό νμΈν μ μλ€.
$\blacksquare$
Group Theoryμμ Normal subgroupμ΄ Factor groupμ μ°μ°μ μ μ μνλ λ°μ μ€μν μ‘°κ±΄μ΄ λμλ€.
λ§μ°¬κ°μ§λ‘ Ring Theoryμμλ μ’μ Normal sub-ringμ κ³¨λΌ Factor Ringμ μ μν μ μλ€!!
λ°λ‘ μμ μ 리λ Factor Ring μ°μ°μ΄ well-defined λκΈ° μν΄μ
for $a, b \in R$
- $aH \subseteq H$
- $Hb \subseteq H$
λ₯Ό λ§μ‘±ν΄μΌ ν¨μ μ§μ νλ€.
Definition. Ideal
A subgroup $N$ of a ring $R$ is an βidealβ, when
\[aN \subseteq N \quad \textrm{and} \quad Nb \subseteq N \quad \forall \; a, b \in R\]μ΄ subgroup $N$μ ideal $I$λ‘ νννμ.
Definition. Factor Ring
Let $I$ be an ideal of a ring $R$.
Then $R/I$ is a ring.
β» Note: Ideal $I$μ μ μμ $(I, +) \trianglelefteq (R, +)$μ΄λ€.
β» TODO: Check $R/I$ is a ring
- the set of additive left coset is abelian?
- the set of additive left coset is semi-group?
- Associativity?
- Distributive Law?
Theorem. canonical homomorphism on ring
Let $I \trianglelefteq R$, then
\[\begin{aligned} \phi: R &\longrightarrow R / I \\ r & \longmapsto rI \end{aligned}\]Theorem. FHT on ring