Factor Rings & Ideals
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Definition. Ring homomorphism
Let
A map
; group homomorphism ; semi-group homomorphism
Example. Projection homomorphism
Let
The map
βprojection onto the
Theorem.
Let
1.
2.
3. If
4. If
5. If
proof.
3λ² λͺ μ λ§ μ¦λͺ μ ν΄λ³΄μ.
3λ² λͺ μ μ λν μ¦λͺ
(1) Closure
For
* comment: μ²μμ
Definition. kernel of ring homomorphism
Let
The sub-ring
is the kernel of
Example.
IdealPermalink
Theorem.
Let
Multiplication of additive cosets of
proof.
( )
(
Let
Then,
μ²μ κ°μ μ μν΄
( )
(
Let
Then,
μμ μμμ
λ°λΌμ
λ§μ°¬κ°μ§λ‘ λ°λλ‘
Group Theoryμμ Normal subgroupμ΄ Factor groupμ μ°μ°μ μ μ μνλ λ°μ μ€μν μ‘°κ±΄μ΄ λμλ€.
λ§μ°¬κ°μ§λ‘ Ring Theoryμμλ μ’μ Normal sub-ringμ κ³¨λΌ Factor Ringμ μ μν μ μλ€!!
λ°λ‘ μμ μ 리λ Factor Ring μ°μ°μ΄ well-defined λκΈ° μν΄μ
for
λ₯Ό λ§μ‘±ν΄μΌ ν¨μ μ§μ νλ€.
Definition. Ideal
A subgroup
μ΄ subgroup
Definition. Factor Ring
Let
Then
β» Note: Ideal
β» TODO: Check
- the set of additive left coset is abelian?
- the set of additive left coset is semi-group?
- Associativity?
- Distributive Law?
Theorem. canonical homomorphism on ring
Let
Theorem. FHT on ring