2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

1 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


Definition. Irreducible Polynomial

Let $F$ be a field, and $f(x) \in F[x]$.

if $f(x) \ne g(x) h(x)$ for any non-constant poly-. $g(x), h(x) \in F[x]$,

then $f(x)$ is irreducible over $F[x]$.

Example.

  • $x^2 + 1$ is irreducible over $\mathbb{R}$
  • $x^2 + 1$ is irreducible over $\mathbb{C}$



Theorem.

Let $f(x) \in F[x]$, and $\deg (f(x)) = 2 \; \textrm{or} \; 3$.

$f(x)$ is reducible over $F$ $\iff$ $f(x)$ has a solution over $F$.


Theorem.

Let $f(x) \in \mathbb{Z}[x]$ and $r, s < \deg (f(x))$.

$f(x) = g(x)h(x)$ over $\mathbb{Q}[x]$ with $\deg(g(x)) = r$, $\deg(h(x)) = s$

$\iff$

$f(x) = g_1(x)h_1(x)$ over $\mathbb{Z}[x]$ with $\deg(g_1(x)) = r$, $\deg(h_1(x)) = s$

proof.

Let $f(x) = g(x)h(x)$, $g(x), h(x) \in \mathbb{Q}[x]$.

(Case 1)

(Case 2)