Irreducible Polynomial
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Definition. Irreducible Polynomial
Let $F$ be a field, and $f(x) \in F[x]$.
if $f(x) \ne g(x) h(x)$ for any non-constant poly-. $g(x), h(x) \in F[x]$,
then $f(x)$ is irreducible over $F[x]$.
Example.
- $x^2 + 1$ is irreducible over $\mathbb{R}$
- $x^2 + 1$ is irreducible over $\mathbb{C}$
Theorem.
Let $f(x) \in F[x]$, and $\deg (f(x)) = 2 \; \textrm{or} \; 3$.
$f(x)$ is reducible over $F$ $\iff$ $f(x)$ has a solution over $F$.
Theorem.
Let $f(x) \in \mathbb{Z}[x]$ and $r, s < \deg (f(x))$.
$f(x) = g(x)h(x)$ over $\mathbb{Q}[x]$ with $\deg(g(x)) = r$, $\deg(h(x)) = s$
$\iff$
$f(x) = g_1(x)h_1(x)$ over $\mathbb{Z}[x]$ with $\deg(g_1(x)) = r$, $\deg(h_1(x)) = s$
proof.
Let $f(x) = g(x)h(x)$, $g(x), h(x) \in \mathbb{Q}[x]$.
(Case 1)
(Case 2)