Group Rings & Group Algebras
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Group Rings & Group Algebras
Definition. Group Ring
Let $G = \{ g_i \mid i \in I \}$ be a group under multiplicity, and
let $R$ be a commutative ring with non-zero unity.
Let $R(G)$ be the set of all formal sums
\[\sum_{i \in I} {a_i g_i}\]where finite number of $a_i$ are non-zero.
Properties.
- $(R(G), +)$ is abelian group.
- multiplicity is closed.
- Associativity
Group Ringκ³Ό Polynomialμ μ°¨μ΄λ powerμ μλ€.
- Polynomialμ powerλ₯Ό $\mathbb{N}$μΌλ‘ νννλ λ°λ©΄
- Group Ringμ powerλ₯Ό $g_i \in G$λ‘ νννλ€.
Theorem.
If $G$ is any group written multiplicatively, and $R$ is a commutative ring with non-zero unity,
then $(R(G), +, \cdot\;)$ is a ring.
μμμ μ§ννλ κ³Όμ λ€μ΄ μ΄ μ 리μ μ¦λͺ μ΄ λλ€.
Definition. Group Ring & Group Algebra
μμ κ°μ Ring $R(G)$λ₯Ό βGroup RingβλΌκ³ νλ€.
λ§μ½ $F$κ° FieldλΌλ©΄, $F(G)$λ βGroup AlgebraβλΌκ³ νλ€.
The Quaternions
The Quternions $\mathbb{H}$
- non-commutative division ring
- skew field
- $\mathbb{H} \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$
Properties.
- Quaternion addition
- Quaternion multiplication
- Quaternion conjugate; $\bar{q}$
- Quaternion inverse; $(q)^{-1} = \dfrac{\bar{q}}{ {\lvert q \rvert}^2 }$
Theorem.
The Quaternions forms a skew field under $+$ and $\cdot\;$.
Theorem. Wedderburnβs Theorem
Every finite division ring is a field.
Comment
μ무리 μκ°ν΄λ΄λ Quaternionsλ‘ μ΄λ£¨μ΄μ§ finite division ringμ ꡬμν μκ° μμλ€ γ γ ($\mathbb{R} \le \mathbb{H}$ μ μΈ)
μΆμΈ‘ν건λ°, Quaternion $H$λ‘λ finite sub-ringμ λ§λ€ μ μλκ² μλκ° μκ°νκ³ μλ€ γ γ
(μ μκ°ν΄λ³΄λ©΄, $\mathbb{Z}$λ $\mathbb{Q}$μμλ λλ‘λΆν° finite sub-ringμ λ§λλ 건 λΆκ°λ₯ νκΈ΄ νλ€ γ γ γ )