2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

2 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


Group Rings & Group Algebras

Definition. Group Ring

Let $G = \{ g_i \mid i \in I \}$ be a group under multiplicity, and

let $R$ be a commutative ring with non-zero unity.

Let $R(G)$ be the set of all formal sums

\[\sum_{i \in I} {a_i g_i}\]

where finite number of $a_i$ are non-zero.

Properties.

  • $(R(G), +)$ is abelian group.
\[\left( \sum_{i \in I} {a_i g_i} \right) + \left( \sum_{i \in I} {b_i g_i} \right) = \sum_{i \in I} {(a_i + b_i) g_i}\]
  • multiplicity is closed.
\[\left( \sum_{i \in I} {a_i g_i} \right) \cdot \left( \sum_{i \in I} {b_i g_i} \right) = \sum_{i \in I} \left({ \sum_{g_j g_k = g_i} } {a_j b_k}\right) g_i\]
  • Associativity
생-랡


Group Ringκ³Ό Polynomial의 μ°¨μ΄λŠ” power에 μžˆλ‹€.

  • Polynomial은 powerλ₯Ό $\mathbb{N}$으둜 ν‘œν˜„ν•˜λŠ” 반면
  • Group Ring은 powerλ₯Ό $g_i \in G$둜 ν‘œν˜„ν•œλ‹€.


Theorem.

If $G$ is any group written multiplicatively, and $R$ is a commutative ring with non-zero unity,

then $(R(G), +, \cdot\;)$ is a ring.

μœ„μ—μ„œ μ§„ν–‰ν–ˆλ˜ 과정듀이 이 μ •λ¦¬μ˜ 증λͺ…이 λœλ‹€.


Definition. Group Ring & Group Algebra

μœ„μ™€ 같은 Ring $R(G)$λ₯Ό β€œGroup Ringβ€œλΌκ³  ν•œλ‹€.

λ§Œμ•½ $F$κ°€ Field라면, $F(G)$λŠ” β€œGroup Algebraβ€œλΌκ³  ν•œλ‹€.



The Quaternions

The Quternions $\mathbb{H}$

  • non-commutative division ring
  • skew field
  • $\mathbb{H} \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$

Properties.

  • Quaternion addition
  • Quaternion multiplication
  • Quaternion conjugate; $\bar{q}$
  • Quaternion inverse; $(q)^{-1} = \dfrac{\bar{q}}{ {\lvert q \rvert}^2 }$


Theorem.

The Quaternions forms a skew field under $+$ and $\cdot\;$.


Theorem. Wedderburn’s Theorem

Every finite division ring is a field.

Comment

아무리 생각해봐도 Quaternions둜 이루어진 finite division ring을 ꡬ상할 μˆ˜κ°€ μ—†μ—ˆλ‹€ γ… γ…  ($\mathbb{R} \le \mathbb{H}$ μ œμ™Έ)

μΆ”μΈ‘ν•˜κ±΄λ°, Quaternion $H$λ‘œλŠ” finite sub-ring을 λ§Œλ“€ 수 μ—†λŠ”κ²Œ μ•„λ‹Œκ°€ μƒκ°ν•˜κ³  μžˆλ‹€ γ… γ… 

(잘 생각해보면, $\mathbb{Z}$λ‚˜ $\mathbb{Q}$μ—μ„œλ„ λ‘˜λ‘œλΆ€ν„° finite sub-ring을 λ§Œλ“œλŠ” 건 λΆˆκ°€λŠ₯ ν•˜κΈ΄ ν–ˆλ‹€ γ…‹γ…‹γ…‹)