Prime Field
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Theorem.
$R$: Ring + unity
\[\begin{aligned} \phi: \mathbb{Z} &\longrightarrow R \\ n &\longmapsto n \cdot 1 = 1 + \cdots + 1 \end{aligned}\]then, $\phi$ is a ring homomoprhism.
Corollary.
$R$: Ring + unity
$\textrm{Char}(R) = n > 1$
1. $R$ contains sub-ring $H$ s.t. $H \cong \mathbb{Z}_n$
2. If $\textrm{Char}(R) = 0$, then $R$ contains sub-ring $H$ s.t. $H \cong \mathbb{Z}$.
proof.
Let $\phi$ be a ring homomorphism mentioned above.
Then, $\ker \phi = s \mathbb{Z}$ where $s := \textrm{Char}(R)$.
By FHT,
\[\begin{aligned} \mathbb{Z} / {\ker \phi} &\cong \phi(\mathbb{Z}) \\ \mathbb{Z} / {s \mathbb{Z}} &\cong \mathbb{Z}_s = \phi(\mathbb{Z}) \le R \end{aligned}\]Especially, for (Case 2.), if $\textrm{Char}(R) = 0$, then $\ker \phi = \{ 0 \}$.
This means homomorphism $\phi$ is 1-1.
Thus $R \ge \phi(\mathbb{Z}) \cong \mathbb{Z}$. $\blacksquare$.
Theorem.
Let $F$ be a Field.
Then, $\textrm{Char}(F) = p$ (prime) or $\textrm{Char}(F) = 0$.
So,
1. $\textrm{Char}(F) = p$ $\implies$ $\mathbb{Z}_p \cong H \le F$.
2. $\textrm{Char}(F) = 0$ $\implies$ $\mathbb{Q} \cong H \le F$.
$\mathbb{Z}_p$μ $\mathbb{Q}$ λͺ¨λ Fieldλ€!!
μ¦, Fieldμ $\textrm{Char}(F)$λ₯Ό ν΅ν΄ λ΄λΆμ μ΄λ€ sub-fieldμ κ°μ§κ³ μμμ λλ΅μ μΌλ‘ νμΈν μ μλ€λ λ§μ΄λ€!
proof.
$\mathbb{Z}_n$μ΄ Fieldκ° λλ κ²½μ°λ $n = p$ (prime) λΏμ΄λ€.
Definition.
$\mathbb{Z}_p$ and $\mathbb{Q}$ are called a βPrime Fieldβ.