Modern Algebra I - PS2
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Consider $\mathbb{Z}[\sqrt{-2}]$ as a sub-ring of $\mathbb{C}$ and with the norm $N(a+b\sqrt{-2}) = a^2 + 2b^2$.
(a) The ring $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.
(b) Find a generator for the ideal $\left< 85, -11+4\sqrt{-2} \right>$.
(a) The ring $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.
$\mathbb{Z}[\sqrt{-2}]$κ° Euclidean Algorithmμ λ§μ‘±νλμ§ νμΈν΄μΌ νλ€.
For $a, b \in \mathbb{Z}[\sqrt{-2}]$ with $a \ne 0$.
Check the existence of $q, r \in \mathbb{Z}[\sqrt{-2}]$ with $N(r) < N(a)$ s.t.
\[b = qa + r\]Let $q$ be the point in $\mathbb{Z}[\sqrt{-2}]$ closest to $b/a$.
(μ΄λ $b/a$λ mother-ringμΈ $\mathbb{C}$μμ μ μλλ λ
μμ΄λ€.)
Let $r$ be $r = b - qa$. Then it is immediate that $b = qa + r$.
Now we must show that this $r$ satisfies $N(r) < N(a)$.
\[\left| r \right| = \left| b - qa \right| = \left| \frac{b}{a} - q \right| \left| a \right|\]μ΄λ $\left| \frac{b}{a} - q \right|$λ, μ°λ¦¬κ° μμμ $q$λ₯Ό $b/a$μ λν closest point on $\mathbb{Z}[\sqrt{-2}]$λ‘ μ‘μκΈ° λλ¬Έμ μλμ λΆλ±μμ΄ μ±λ¦½νλ€.
\[\left| \frac{b}{a} - q \right| \le \left| (1 + \sqrt{-2})/2 \right| = \frac{\sqrt{3}}{2}\]λ°λΌμ
\[\left| r \right| = \left| \frac{b}{a} - q \right| \left| a \right| \le \frac{\sqrt{3}}{2} \left| a \right| < \left| a \right|\]λ°λΌμ $N(r) < N(a)$μ΄ μ±λ¦½νλ―λ‘,
$\mathbb{Z}[\sqrt{-2}]$λ Euclidean Domainμ΄λ€. $\blacksquare$
(b) Find a generator for the ideal $\left< 85, -11+4\sqrt{-2} \right>$.
(a)μμ $\mathbb{Z}[\sqrt{-2}]$κ° Euclidean Domainμμ 보μμΌλ―λ‘ Euclidean Algorithmμ νμ©ν΄ GCDλ₯Ό ꡬν μ μλ€!
$85$κ° $-11+4\sqrt{-2}$λ³΄λ€ λ ν¬λ―λ‘ $85$λ₯Ό $-11+4\sqrt{-2}$λ‘ λλ μ€λ€.
\[85 = q (-11 + 4 \sqrt{-2}) + r\]μ¬κΈ°μμ μ΄λ»κ² $q$λ₯Ό ꡬν μ§ κ³ λ―Όμ λ§μ΄ νλλ°, κ²°κ΅μ (a)μμ μ μν λλ‘ $q$λ₯Ό the closest pointλ‘ μ‘μΌλ©΄ λλ κ±°μλ€.
κ·Έλμ $\frac{85}{-11+\sqrt{-2}}$λ₯Ό ꡬν΄μΌ νλλ°, μ΄κ±΄ μΌλ°μ μΈ Complex Divisionμ νλ©΄ λλ€.
\[\frac{85}{-11+4\sqrt{-2}} = \frac{85}{-11+4\sqrt{-2}} \frac{-11-4\sqrt{-2}}{-11-4\sqrt{-2}} = \frac{-11 \cdot 85}{153} + \frac{-4 \cdot 85}{153} \sqrt{-2}\]κ·Έ λ€μμ μ΄κΈ μ°μ°μ΄λΌ λͺ«μ ꡬν΄μ the closest point on $\mathbb{Z}[\sqrt{-2}]$λ₯Ό μ°ΎμΌλ©΄ $-6 -2 \sqrt{-2}$κ° λλ€!
λ°λΌμ
\[\begin{aligned} 85 &= (-6-2\sqrt{-2}) (-11 + 4 \sqrt{-2}) + r \\ &= (-6-2\sqrt{-2}) (-11 + 4 \sqrt{-2}) + (3 + 2\sqrt{-2}) \end{aligned}\]μ΄μ λλ¨Έμ§κ³Ό Divisorμ λν΄ λ€μ Euclidean Algorithmμ μ μ©νλ©΄
\[-11 + 4 \sqrt{-2} = (-1 + 2\sqrt{-2})(3 + 2\sqrt{-2})\]λ°λΌμ $\gcd (85, -11+4\sqrt{-2}) = (3 + 2\sqrt{-2})$κ° λλ€!
$\therefore \left< 85, -11+4\sqrt{-2} \right> = \left< 3 + 2\sqrt{-2} \right>$. $\blacksquare$