2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

3 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


Consider $\mathbb{Z}[\sqrt{-2}]$ as a sub-ring of $\mathbb{C}$ and with the norm $N(a+b\sqrt{-2}) = a^2 + 2b^2$.

(a) The ring $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.

(b) Find a generator for the ideal $\left< 85, -11+4\sqrt{-2} \right>$.


(a) The ring $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.

$\mathbb{Z}[\sqrt{-2}]$κ°€ Euclidean Algorithm을 λ§Œμ‘±ν•˜λŠ”μ§€ 확인해야 ν•œλ‹€.

For $a, b \in \mathbb{Z}[\sqrt{-2}]$ with $a \ne 0$.

Check the existence of $q, r \in \mathbb{Z}[\sqrt{-2}]$ with $N(r) < N(a)$ s.t.

\[b = qa + r\]

Let $q$ be the point in $\mathbb{Z}[\sqrt{-2}]$ closest to $b/a$.
(μ΄λ•Œ $b/a$λŠ” mother-ring인 $\mathbb{C}$μ—μ„œ μ •μ˜λ˜λŠ” 녀석이닀.)

Let $r$ be $r = b - qa$. Then it is immediate that $b = qa + r$.

Now we must show that this $r$ satisfies $N(r) < N(a)$.

\[\left| r \right| = \left| b - qa \right| = \left| \frac{b}{a} - q \right| \left| a \right|\]

μ΄λ•Œ $\left| \frac{b}{a} - q \right|$λŠ”, μš°λ¦¬κ°€ μ•žμ—μ„œ $q$λ₯Ό $b/a$에 λŒ€ν•œ closest point on $\mathbb{Z}[\sqrt{-2}]$둜 μž‘μ•˜κΈ° λ•Œλ¬Έμ— μ•„λž˜μ˜ 뢀등식이 μ„±λ¦½ν•œλ‹€.

\[\left| \frac{b}{a} - q \right| \le \left| (1 + \sqrt{-2})/2 \right| = \frac{\sqrt{3}}{2}\]

λ”°λΌμ„œ

\[\left| r \right| = \left| \frac{b}{a} - q \right| \left| a \right| \le \frac{\sqrt{3}}{2} \left| a \right| < \left| a \right|\]

λ”°λΌμ„œ $N(r) < N(a)$이 μ„±λ¦½ν•˜λ―€λ‘œ,

$\mathbb{Z}[\sqrt{-2}]$λŠ” Euclidean Domain이닀. $\blacksquare$

(b) Find a generator for the ideal $\left< 85, -11+4\sqrt{-2} \right>$.

(a)μ—μ„œ $\mathbb{Z}[\sqrt{-2}]$κ°€ Euclidean Domainμž„μ„ λ³΄μ˜€μœΌλ―€λ‘œ Euclidean Algorithm을 ν™œμš©ν•΄ GCDλ₯Ό ꡬ할 수 μžˆλ‹€!

$85$κ°€ $-11+4\sqrt{-2}$보닀 더 ν¬λ―€λ‘œ $85$λ₯Ό $-11+4\sqrt{-2}$둜 λ‚˜λˆ μ€€λ‹€.

\[85 = q (-11 + 4 \sqrt{-2}) + r\]

μ—¬κΈ°μ—μ„œ μ–΄λ–»κ²Œ $q$λ₯Ό ꡬ할지 고민을 많이 ν–ˆλŠ”λ°, 결ꡭ은 (a)μ—μ„œ μ •μ˜ν•œ λŒ€λ‘œ $q$λ₯Ό the closest point둜 작으면 λ˜λŠ” κ±°μ˜€λ‹€.

κ·Έλž˜μ„œ $\frac{85}{-11+\sqrt{-2}}$λ₯Ό ꡬ해야 ν•˜λŠ”λ°, 이건 일반적인 Complex Division을 ν•˜λ©΄ λœλ‹€.

\[\frac{85}{-11+4\sqrt{-2}} = \frac{85}{-11+4\sqrt{-2}} \frac{-11-4\sqrt{-2}}{-11-4\sqrt{-2}} = \frac{-11 \cdot 85}{153} + \frac{-4 \cdot 85}{153} \sqrt{-2}\]

κ·Έ λ‹€μŒμ€ μ΄ˆκΈ‰ 연산이라 λͺ«μ„ κ΅¬ν•΄μ„œ the closest point on $\mathbb{Z}[\sqrt{-2}]$λ₯Ό 찾으면 $-6 -2 \sqrt{-2}$κ°€ λœλ‹€!

λ”°λΌμ„œ

\[\begin{aligned} 85 &= (-6-2\sqrt{-2}) (-11 + 4 \sqrt{-2}) + r \\ &= (-6-2\sqrt{-2}) (-11 + 4 \sqrt{-2}) + (3 + 2\sqrt{-2}) \end{aligned}\]

이제 λ‚˜λ¨Έμ§€κ³Ό Divisor에 λŒ€ν•΄ λ‹€μ‹œ Euclidean Algorithm을 μ μš©ν•˜λ©΄

\[-11 + 4 \sqrt{-2} = (-1 + 2\sqrt{-2})(3 + 2\sqrt{-2})\]

λ”°λΌμ„œ $\gcd (85, -11+4\sqrt{-2}) = (3 + 2\sqrt{-2})$κ°€ λœλ‹€!

$\therefore \left< 85, -11+4\sqrt{-2} \right> = \left< 3 + 2\sqrt{-2} \right>$. $\blacksquare$