Modern Algebra I - PS3
2020-2νκΈ°, λνμμ βνλλμ1β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Artin, p.442, sec.2, #2a.
The ring $\mathbb{Z}[\zeta]$, for $\zeta = e^{2 \pi i / 3}$, is a Euclidean Domain.
The Norm function $N$ would be complex modulus $\left| \cdot \right|$ square.
- Check $N$ is integer valued on $\mathbb{Z}[\zeta]$.
- The Division Algorithm works.
(1) $N$ is integer valued.
$\zeta$λ root of unity μ€ νλ μ΄λ―λ‘ μλκ° μ±λ¦½νλ€.
- $\zeta^3 = 1$
- $\zeta^2 = 1 - \zeta$
λ°λΌμ $\mathbb{Z}[\zeta]$μ μμλ μλμ κ°μ ννλ‘ κΈ°μ λλ€.
\[a + b \zeta \quad \textrm{for some} \quad a, b \in \mathbb{Z}\]($1$μ΄ $\left< \zeta \right>$μ ν¬ν¨λμ΄ μκΈ° λλ¬Έ!)
λν, $\zeta = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$μ΄λ―λ‘, Norm $N$μ
\[\begin{aligned} \left| a+b\zeta \right|^2 &= \left| \left(a - \frac{b}{2}\right) + \frac{\sqrt{3}b}{2}i\right|^2 \\ &= a^2 -ab + \frac{b^2}{4} + \frac{3b^2}{4} \\ &= a^2 - ab + b^2 \ge (a - b)^2 \ge 0 \end{aligned}\]λ°λΌμ $N$μ integer valued functionμ΄λ€!
(2) Division Algorithm
For $a, b \in \mathbb{Z}[\zeta]$ and $a \ne 0$, check that there exist $q, r \in \mathbb{Z}[\zeta]$ s.t.
\[b = qa + r\]where $N(r) < N(a)$.
Let $q$ be the closest point to $b/a$ on $\mathbb{Z}[\zeta]$.
Let $r$ be $r = b - qa$.
Then check that
\[\left| r \right| = \left| b - qa \right| = \left| \frac{b}{a} - q \right| \left| a \right|\]μ΄λ, $\left| \frac{b}{a} - q \right|$μ λν΄ μκ°ν΄λ³΄μ.
$\dfrac{b}{a}$λ₯Ό μ λλ‘ κ΅¬νλ©΄, $\dfrac{b}{a} = s + t \zeta \in \mathbb{Q}[\zeta]$μ΄λ€.
μ΄λ $q$λ₯Ό $\dfrac{b}{a}$μ κ°μ₯ κ°κΉμ΄ $\mathbb{Z}[\zeta]$λ‘ μ€μ νμΌλ―λ‘
\[q = x + y\zeta, \quad \textrm{where} \quad \left|x-s\right| \le \frac{1}{2} \quad \textrm{and} \quad \left|y-t\right| \le \frac{1}{2}\]λ°λΌμ $\left| \frac{b}{a} - q \right|$λ
\[\begin{aligned} \left| \frac{b}{a} - q \right|^2 &= \left| (s+t\zeta) - (x+y\zeta) \right|^2 \\ &= \left| (s-x) + (t-y)\zeta \right|^2 \\ &= \left| \left((s-x) - \frac{(t-y)}{2}\right)+ \frac{(t-y)\sqrt{3}}{2}i \right|^2 \\ &= (s-x)^2 - (s-x)(t-y) + \frac{(t-y)^2}{4} + \frac{3(t-y)^2}{4} \\ &= (s-x)^2 - (s-x)(t-y) + (t-y)^2 \le \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4} \end{aligned}\]λ°λΌμ
\[\begin{aligned} \left| r \right| &= \left| b - qa \right| = \left| \frac{b}{a} - q \right| \left| a \right| \\ &\le \frac{3}{4} \left| a \right| < \left| a \right| \end{aligned}\]μ¦, Division Algorithmμ΄ μ±λ¦½νλ―λ‘ $\mathbb{Z}[\zeta]$λ Euclidean Algorithmμ΄λ€. $\blacksquare$
μμ λ¬Έμ λ $\mathbb{Z}[\sqrt{-2}]$κ° Euclidean Domainμμ 보μ΄λ λ¬Έμ μλλ°, μ΄λ²μλ λΉμ·ν λ¬Έμ μλ€.
λ¬Έμ λ₯Ό νκ³ λμ λ μκ°μ μ§κΈμ ν¨ν΄μ μΌλ°ννλ©΄ $\mathbb{Z}[\omega]$ for any $\omega \in \mathbb{C}$λ₯Ό Euclidean DomainμΌλ‘ λ§λ€ μ μμμ§ μκ°ν΄λ΄€λ€.
κ·Έλ°λ° Euclidean Domainμ λν΄ κ²μμ μ’ ν΄λ³΄λ μλμ κ°μ 쑰건 μλμμ $\mathbb{Z}[\omega]$κ° Euclidean Domainμ΄ λλ κ² κ°λ€.
Case 1: $\mathbb{Z}[\sqrt{-n}]$
If $n = 1$ or $n=2$, then $\mathbb{Z}[\sqrt{-n}]$ is an Euclidean Domain.
If $n \ge 3$, then $\mathbb{Z}[\sqrt{-n}]$ is not an Euclidean Domain.
μΌλ¨ μ΄κ±΄ $\dfrac{b}{a} - q$μ λν Normμ ꡬν΄λ³΄λ©΄, $\dfrac{1 + n}{4}$κ° λμ€λλ°, μ΄κ² $\dfrac{1+n}{4} < 1$μ΄ λμΌ ν΄μ κ·Έλ° κ±Έλ‘ μκ³ μλ€.
Case 2: $\mathbb{Z}[\omega]$
μ΄ κ²½μ°μλ $\omega$κ° cube root of unityκ° λ λ Euclidean Domainμ΄ λλ€.
$\omega$κ° cube root of unityκ° λλ κ²½μ°λ $\omega = e^{2\pi i / 3}$κ³Ό $\omega = e^{4\pi i / 3}$μ΄λ€.
κ·Έ μΈμ κ²½μ°λ λκ° μ§μ $\dfrac{b}{a} - q$λ₯Ό ꡬν΄λ΄μΌ ν κ² κ°λ€. μλ λ΄κ° μμ§ μ°Ύμ§ λͺ»ν $\omega \in \mathbb{C}$μ λν μ‘°κ±΄μ΄ μμ μλ?