2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

5 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜ν˜„λŒ€λŒ€μˆ˜1’ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)


Artin, p.442, sec.2, #2a.

The ring $\mathbb{Z}[\zeta]$, for $\zeta = e^{2 \pi i / 3}$, is a Euclidean Domain.


The Norm function $N$ would be complex modulus $\left| \cdot \right|$ square.

  1. Check $N$ is integer valued on $\mathbb{Z}[\zeta]$.
  2. The Division Algorithm works.


(1) $N$ is integer valued.

$\zeta$λŠ” root of unity 쀑 ν•˜λ‚˜ μ΄λ―€λ‘œ μ•„λž˜κ°€ μ„±λ¦½ν•œλ‹€.

  • $\zeta^3 = 1$
  • $\zeta^2 = 1 - \zeta$

λ”°λΌμ„œ $\mathbb{Z}[\zeta]$의 μ›μ†ŒλŠ” μ•„λž˜μ™€ 같은 ν˜•νƒœλ‘œ κΈ°μˆ λœλ‹€.

\[a + b \zeta \quad \textrm{for some} \quad a, b \in \mathbb{Z}\]

($1$이 $\left< \zeta \right>$에 ν¬ν•¨λ˜μ–΄ 있기 λ•Œλ¬Έ!)

λ˜ν•œ, $\zeta = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$μ΄λ―€λ‘œ, Norm $N$은

\[\begin{aligned} \left| a+b\zeta \right|^2 &= \left| \left(a - \frac{b}{2}\right) + \frac{\sqrt{3}b}{2}i\right|^2 \\ &= a^2 -ab + \frac{b^2}{4} + \frac{3b^2}{4} \\ &= a^2 - ab + b^2 \ge (a - b)^2 \ge 0 \end{aligned}\]

λ”°λΌμ„œ $N$은 integer valued function이닀!


(2) Division Algorithm

For $a, b \in \mathbb{Z}[\zeta]$ and $a \ne 0$, check that there exist $q, r \in \mathbb{Z}[\zeta]$ s.t.

\[b = qa + r\]

where $N(r) < N(a)$.

Let $q$ be the closest point to $b/a$ on $\mathbb{Z}[\zeta]$.

Let $r$ be $r = b - qa$.

Then check that

\[\left| r \right| = \left| b - qa \right| = \left| \frac{b}{a} - q \right| \left| a \right|\]

μ΄λ•Œ, $\left| \frac{b}{a} - q \right|$에 λŒ€ν•΄ μƒκ°ν•΄λ³΄μž.

$\dfrac{b}{a}$λ₯Ό μ œλŒ€λ‘œ κ΅¬ν•˜λ©΄, $\dfrac{b}{a} = s + t \zeta \in \mathbb{Q}[\zeta]$이닀.

μ΄λ•Œ $q$λ₯Ό $\dfrac{b}{a}$에 κ°€μž₯ κ°€κΉŒμš΄ $\mathbb{Z}[\zeta]$둜 μ„€μ •ν–ˆμœΌλ―€λ‘œ

\[q = x + y\zeta, \quad \textrm{where} \quad \left|x-s\right| \le \frac{1}{2} \quad \textrm{and} \quad \left|y-t\right| \le \frac{1}{2}\]

λ”°λΌμ„œ $\left| \frac{b}{a} - q \right|$λŠ”

\[\begin{aligned} \left| \frac{b}{a} - q \right|^2 &= \left| (s+t\zeta) - (x+y\zeta) \right|^2 \\ &= \left| (s-x) + (t-y)\zeta \right|^2 \\ &= \left| \left((s-x) - \frac{(t-y)}{2}\right)+ \frac{(t-y)\sqrt{3}}{2}i \right|^2 \\ &= (s-x)^2 - (s-x)(t-y) + \frac{(t-y)^2}{4} + \frac{3(t-y)^2}{4} \\ &= (s-x)^2 - (s-x)(t-y) + (t-y)^2 \le \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4} \end{aligned}\]

λ”°λΌμ„œ

\[\begin{aligned} \left| r \right| &= \left| b - qa \right| = \left| \frac{b}{a} - q \right| \left| a \right| \\ &\le \frac{3}{4} \left| a \right| < \left| a \right| \end{aligned}\]

즉, Division Algorithm이 μ„±λ¦½ν•˜λ―€λ‘œ $\mathbb{Z}[\zeta]$λŠ” Euclidean Algorithm이닀. $\blacksquare$



μ•žμ„  λ¬Έμ œλ„ $\mathbb{Z}[\sqrt{-2}]$κ°€ Euclidean Domainμž„μ„ λ³΄μ΄λŠ” λ¬Έμ œμ˜€λŠ”λ°, μ΄λ²ˆμ—λ„ λΉ„μŠ·ν•œ λ¬Έμ œμ˜€λ‹€.

문제λ₯Ό ν’€κ³  λ‚˜μ„œ λ“  생각은 μ§€κΈˆμ˜ νŒ¨ν„΄μ„ μΌλ°˜ν™”ν•˜λ©΄ $\mathbb{Z}[\omega]$ for any $\omega \in \mathbb{C}$λ₯Ό Euclidean Domain으둜 λ§Œλ“€ 수 μžˆμ„μ§€ 생각해봀닀.

그런데 Euclidean Domain에 λŒ€ν•΄ 검색을 μ’€ ν•΄λ³΄λ‹ˆ μ•„λž˜μ™€ 같은 쑰건 μ•„λž˜μ—μ„œ $\mathbb{Z}[\omega]$κ°€ Euclidean Domain이 λ˜λŠ” 것 κ°™λ‹€.


Case 1: $\mathbb{Z}[\sqrt{-n}]$

If $n = 1$ or $n=2$, then $\mathbb{Z}[\sqrt{-n}]$ is an Euclidean Domain.

If $n \ge 3$, then $\mathbb{Z}[\sqrt{-n}]$ is not an Euclidean Domain.

일단 이건 $\dfrac{b}{a} - q$에 λŒ€ν•œ Norm을 ꡬ해보면, $\dfrac{1 + n}{4}$κ°€ λ‚˜μ˜€λŠ”λ°, 이게 $\dfrac{1+n}{4} < 1$이 λ˜μ•Ό ν•΄μ„œ 그런 걸둜 μ•Œκ³  μžˆλ‹€.


Case 2: $\mathbb{Z}[\omega]$

이 κ²½μš°μ—λŠ” $\omega$κ°€ cube root of unityκ°€ λ λ•Œ Euclidean Domain이 λœλ‹€.

$\omega$κ°€ cube root of unityκ°€ λ˜λŠ” κ²½μš°λŠ” $\omega = e^{2\pi i / 3}$κ³Ό $\omega = e^{4\pi i / 3}$이닀.


κ·Έ μ™Έμ˜ κ²½μš°λŠ” λ­”κ°€ 직접 $\dfrac{b}{a} - q$λ₯Ό ꡬ해봐야 ν•  것 κ°™λ‹€. μ•„λ‹˜ λ‚΄κ°€ 아직 찾지 λͺ»ν•œ $\omega \in \mathbb{C}$에 λŒ€ν•œ 쑰건이 μžˆμ„ μˆ˜λ„?