Complex Variable - Basic
2020-2νκΈ°, λνμμ βμμ©λ³΅μν¨μλ‘ β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
볡μμμ λν μ λ§ κΈ°μ΄μ μΈ λ΄μ©μ μ-λ΅
Definition. Triangle inequality
For $z_1, z_2 \in \mathbb{C}$,
\[\left| z_1 + z_2 \right| \le \left| z_1 \right| + \left| z_2 \right|\]μμ£Ό μ°μ§ μμ§λ§, λ λ€λ₯Έ λ²μ λ μλ€.
\[\left| z_1 \right| - \left| z_2 \right| \le \left| z_1 - z_2 \right|\]μ λ
\[\begin{aligned} \left| (z_1 - z_2) + z_2 \right| &\le \left| z_1 - z_2\right| + \left| z_2 \right| \\ \left| z_1 \right| - \left| z_2 \right| &\le \left| z_1 - z_2\right| \end{aligned}\]
Formula. Eulerβs formula
μ λ
$e^x$λ₯Ό ν μΌλ¬ μ κ°νλ©΄ μλμ κ°λ€.
\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \frac{x^n}{n!} + \cdots\]μ΄λ $x$μ $i\theta$λ₯Ό λμ νλ©΄,
\[e^{i\theta} = 1 + i\theta + \frac{(-1)\theta^2}{2!} + \frac{i \theta^3}{3!} + \frac{\theta^4}{4!} + \cdots +\]μμ μμμ νμ-λ²μ§Έ ν λ§ λͺ¨μ κ²μ΄ $\cos \theta$μ΄κ³ , μ§μ-λ²μ¬ ν λ§ λͺ¨μ κ²μ΄ $i \sin \theta$κ° λλ€. $\blacksquare$
Formula. de Moivreβs formula
Exercise.
Derive
\[\cos 5x = 16 \cos^5 x - 20 \cos^3 x + 5 \cos x\]Solution.
de Moivreβs formulaλ₯Ό μ¬μ©νλ€.
\[(\cos x + i \sin x)^5 = \cos 5x + i \sin 5x\]λ°λΌμ
\[\cos 5x = \textrm{Re} \left( (\cos x + i \sin x)^5 \right) \\\] \[\begin{aligned} (\cos x + i \sin x)^5 &= \left((\cos x + i \sin x)^2\right)^2 (\cos x + i \sin x) \\ &= \left(\cos^2 x + 2i \cos x \sin x - \sin^2 x \right)^2 (\cos x + i \sin x) \\ &= (\cos^4 x + 4i \cos^3 x \sin x - 6 \cos^2 x \sin^2 x - 4i \cos x \sin^3 x + \sin^4 x)(\cos x + i \sin x) \\ &= (\textrm{take only real part}) \quad \cos^5 x - 10 \cos^3 x \sin^2 x + 5 \cos x \sin^4 x \\ &= \cos^5 x - 10 \cos^3 x (1-\cos^2 x) + 5 \cos x (1-\cos^2 x)^2 \\ &= 16 \cos^5 x - 20 \cos^3 x + 5 \cos x \end{aligned}\]$\blacksquare$
Formula. $n$-th root of $w$
$w \in \mathbb{C}$μ κ·ΌνΈ(root)λ₯Ό μ·¨ν κ²°κ³Όλ₯Ό λ§νλ€.
Let $w = R e^{i \varphi}$, then
$z = r e^{i\theta}$ for $z^n = w$ is like this
- $r^n = R$ $\iff$ $r = R^{1/n}$
- $n\theta \pm 2\pi k = \varphi$ $\iff$ $\theta = \dfrac{\varphi}{n} \pm \dfrac{2\pi}{n}k$
$n$-rootκ° single-valueλ‘ μ ν΄μ§λ μ€μμλ λ¬λ¦¬ 볡μμμμμ $n$-root $z^{1/n}$μ $n$-valued functionμ΄λ€. κ·Έλμ $z^{1/n}$λ μλμ κ°λ€.
\[z^{1/n} = \sqrt[n]{r} \exp \left[ i \left( \frac{\theta}{n} + \frac{2k \pi}{n} \right) \right] \quad k = 1, 2, ..., n-1\]
Definition. $\epsilon$-neighborhood of $z_0$
- deleted $\epsilon$-neighborhood of $z_0$
Definition. Interior / Exterior / Boundary
For a set $S \subset \mathbb{C}$
1. Interor point
A point $z_0$ is called an βinteror pointβ if there is an $\epsilon$-neighborhood of $z_0$ s.t.
\[B(z_0, \epsilon) \subset S\]2. Exterior point
A point $z_0$ is called an βexterior pointβ if there is a $\epsilon$-neighborhood of $z_0$ s.t.
\[B(z_0, \epsilon) \cap S = \emptyset\]3. Boundary point
If $z_0$ is neither of these, then it is called a βboundary pointβ.
Definition. Open / Closed set
1. Open set
A set $S$ is βopenβ if every point of $S$ is an interior point.
(No boundary points)
2. Closed set
A set $S$ is closed if $S^c$ is open, equivalently $S$ contains all baoundary points of $S$.