2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

5 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

๋ณต์†Œ์ˆ˜์— ๋Œ€ํ•œ ์ •๋ง ๊ธฐ์ดˆ์ ์ธ ๋‚ด์šฉ์€ ์ƒ-๋žต


Definition. Triangle inequality

For $z_1, z_2 \in \mathbb{C}$,

\[\left| z_1 + z_2 \right| \le \left| z_1 \right| + \left| z_2 \right|\]

์ž์ฃผ ์“ฐ์ง„ ์•Š์ง€๋งŒ, ๋˜ ๋‹ค๋ฅธ ๋ฒ„์ „๋„ ์žˆ๋‹ค.

\[\left| z_1 \right| - \left| z_2 \right| \le \left| z_1 - z_2 \right|\]
์œ ๋„ \[\begin{aligned} \left| (z_1 - z_2) + z_2 \right| &\le \left| z_1 - z_2\right| + \left| z_2 \right| \\ \left| z_1 \right| - \left| z_2 \right| &\le \left| z_1 - z_2\right| \end{aligned}\]



Formula. Eulerโ€™s formula

\[e^{i \theta} = \cos \theta + i \sin \theta\]
์œ ๋„

$e^x$๋ฅผ ํ…Œ์ผ๋Ÿฌ ์ „๊ฐœํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \frac{x^n}{n!} + \cdots\]

์ด๋•Œ $x$์— $i\theta$๋ฅผ ๋Œ€์ž…ํ•˜๋ฉด,

\[e^{i\theta} = 1 + i\theta + \frac{(-1)\theta^2}{2!} + \frac{i \theta^3}{3!} + \frac{\theta^4}{4!} + \cdots +\]

์œ„์˜ ์‹์—์„œ ํ™€์ˆ˜-๋ฒˆ์งธ ํ…€๋งŒ ๋ชจ์€ ๊ฒƒ์ด $\cos \theta$์ด๊ณ , ์ง์ˆ˜-๋ฒˆ์žฌ ํ…€๋งŒ ๋ชจ์€ ๊ฒƒ์ด $i \sin \theta$๊ฐ€ ๋œ๋‹ค. $\blacksquare$



Formula. de Moivreโ€™s formula

\[e^{in\theta} = (\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta\]


Exercise.

Derive

\[\cos 5x = 16 \cos^5 x - 20 \cos^3 x + 5 \cos x\]
Solution.

de Moivreโ€™s formula๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.

\[(\cos x + i \sin x)^5 = \cos 5x + i \sin 5x\]

๋”ฐ๋ผ์„œ

\[\cos 5x = \textrm{Re} \left( (\cos x + i \sin x)^5 \right) \\\] \[\begin{aligned} (\cos x + i \sin x)^5 &= \left((\cos x + i \sin x)^2\right)^2 (\cos x + i \sin x) \\ &= \left(\cos^2 x + 2i \cos x \sin x - \sin^2 x \right)^2 (\cos x + i \sin x) \\ &= (\cos^4 x + 4i \cos^3 x \sin x - 6 \cos^2 x \sin^2 x - 4i \cos x \sin^3 x + \sin^4 x)(\cos x + i \sin x) \\ &= (\textrm{take only real part}) \quad \cos^5 x - 10 \cos^3 x \sin^2 x + 5 \cos x \sin^4 x \\ &= \cos^5 x - 10 \cos^3 x (1-\cos^2 x) + 5 \cos x (1-\cos^2 x)^2 \\ &= 16 \cos^5 x - 20 \cos^3 x + 5 \cos x \end{aligned}\]

$\blacksquare$



Formula. $n$-th root of $w$

$w \in \mathbb{C}$์˜ ๊ทผํ˜ธ(root)๋ฅผ ์ทจํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋งํ•œ๋‹ค.

Let $w = R e^{i \varphi}$, then

$z = r e^{i\theta}$ for $z^n = w$ is like this

  • $r^n = R$ $\iff$ $r = R^{1/n}$
  • $n\theta \pm 2\pi k = \varphi$ $\iff$ $\theta = \dfrac{\varphi}{n} \pm \dfrac{2\pi}{n}k$

$n$-root๊ฐ€ single-value๋กœ ์ •ํ•ด์ง€๋Š” ์‹ค์ˆ˜์™€๋Š” ๋‹ฌ๋ฆฌ ๋ณต์†Œ์ˆ˜์—์„œ์˜ $n$-root $z^{1/n}$์€ $n$-valued function์ด๋‹ค. ๊ทธ๋ž˜์„œ $z^{1/n}$๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[z^{1/n} = \sqrt[n]{r} \exp \left[ i \left( \frac{\theta}{n} + \frac{2k \pi}{n} \right) \right] \quad k = 1, 2, ..., n-1\]




Definition. $\epsilon$-neighborhood of $z_0$

\[\left\{ z : \left| z - z_0 \right| < \epsilon \right\}\]
  • deleted $\epsilon$-neighborhood of $z_0$
\[\left\{ z : 0 < \left| z - z_0 \right| < \epsilon \right\}\]



Definition. Interior / Exterior / Boundary

For a set $S \subset \mathbb{C}$

1. Interor point

A point $z_0$ is called an โ€œinteror pointโ€ if there is an $\epsilon$-neighborhood of $z_0$ s.t.

\[B(z_0, \epsilon) \subset S\]


2. Exterior point

A point $z_0$ is called an โ€œexterior pointโ€ if there is a $\epsilon$-neighborhood of $z_0$ s.t.

\[B(z_0, \epsilon) \cap S = \emptyset\]


3. Boundary point

If $z_0$ is neither of these, then it is called a โ€œboundary pointโ€.



Definition. Open / Closed set

1. Open set

A set $S$ is โ€œopenโ€ if every point of $S$ is an interior point.
(No boundary points)

2. Closed set

A set $S$ is closed if $S^c$ is open, equivalently $S$ contains all baoundary points of $S$.