2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

7 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

Complex Functions

A function $f$ defined on $S \subset \mathbb{C}$ is a rule that assigns to each $z \in S$ to a complex number $w$.

\[f: S \longrightarrow \mathbb{C}\]


Example.

  • $f(z) = \frac{1}{z}$, $z \ne 0$
  • $f(z) = z^2$

볡수 ν•¨μˆ˜λŠ” μ •μ˜μ—­λ„ 2차원이고, 곡역도 2차원이기 λ•Œλ¬Έμ— ν•˜λ‚˜μ˜ κ·Έλž˜ν”„μ— visualization ν•˜λŠ” 것이 λΆˆκ°€λŠ₯함!!


λ³΅μ†Œ ν•¨μˆ˜λŠ” real-part와 imaginary-partλ₯Ό 각각 두 개의 real-valued function으둜 뢄리해 ν‘œν˜„ν•  μˆ˜λ„ 있음.

\[f(z) = u(x, y) + i v(x, y)\]


Example.

$f(x) = z^2$, $z = x + iy$

-> $(x+iy)^2 = x^2 - y^2 + i(2xy)$


λ³΅μ†Œ ν•¨μˆ˜λ₯Ό polar coordinate둜 ν‘œν˜„ν•  μˆ˜λ„ 있음!

\[f(z) = u(r, \theta) + i v(r, \theta)\]


Example.

$f(z) = z^2$, $z = r e^{i\theta}$

-> ${r^2}e^{2\theta} = r^2 \cos 2\theta + i (r^2 \sin 2\theta)$


λ³΅μ†Œ ν•¨μˆ˜μ˜ 경우, λͺ‡λͺ‡ κ²½μš°μ—μ„œλŠ” β€œmulti-valued relation”이 μœ λ„λ  수 있음.

예λ₯Ό λ“€λ©΄,

ν•¨μˆ˜ $f(z)$κ°€ $f(z) = z^{1/2}$라면,

\[z^{1/2} = \pm \sqrt{r} \exp {(i\theta / 2)}\]

κ°€ λœλ‹€.

즉, $f(z) = z^{1/2}$에 λŒ€ν•΄μ„œλŠ” ν•˜λ‚˜μ˜ λ³΅μ†Œμˆ˜ $z$에 λŒ€ν•΄ 두 개의 ν•¨μˆ«κ°’ $f(z)$이 μ‘΄μž¬ν•  수 μžˆλ‹€λŠ” 것이닀.

이렇듯, λͺ‡λͺ‡ λ³΅μ†Œ ν•¨μˆ˜λŠ” β€œmulti-valued relation”을 보이기도 ν•˜λŠ”λ°, 보톡은 multi-valued relation을 single-valued relation으둜 적절히 restrictionν•˜μ—¬ ν•΄κ²°ν•œλ‹€.


Complex Limit

As $z$ approaches to $z_0$, $f(z)$ approaches to $w_0$.

\[\lim_{z \rightarrow z_0} {f(z)} = w_0\]

μ‹€μˆ˜ ν•¨μˆ˜μ—μ„œμ˜ κ·Ήν•œμ€ β€œ$\epsilon$-$\delta$ 논법”에 μ˜ν•΄ μ •μ˜κ°€ λ˜μ—ˆλ‹€. λ³΅μ†Œ ν•¨μˆ˜μ—μ„œμ˜ κ·Ήν•œ μ—­μ‹œ β€œ$\epsilon$-$\delta$ 논법”을 μ‚¬μš©ν•œλ‹€.

For each $\epsilon > 0$, there is $\delta$ such that

\[\left| f(z) - w_0 \right| < \epsilon \quad \textrm{whenever} \quad 0 < \left| z - z_0 \right| < \delta\]

즉, 곡역 μœ„μ—μ„œ μ–΄λ–€ $\epsilon$을 μž‘λ”λΌλ„, μ •μ˜μ—­μ—μ„œ μœ„μ˜ 뢀등식을 λ§Œμ‘±ν•˜λŠ” μ μ ˆν•œ $\delta$λ₯Ό μž‘μ„ 수 μžˆλ‹€λŠ” 것을 λ§ν•œλ‹€.

단, κ·Ήν•œμ΄ μ‘΄μž¬ν•˜μ§€ μ•ŠλŠ” κ²½μš°λ„ μžˆλ‹€. 이 κ²½μš°λŠ” μ•„λž˜μ™€ 같이 λ¬˜μ‚¬ν•œλ‹€.

β€œThere exist a sequence $(z_n) \quad (z_n \ne z_0)$ s.t. $z_n \rightarrow z_0$ but $\left| f(z_n) \rightarrow w_0 \right| \ge \epsilon > 0$ for some $\epsilon$”

즉, $z_n$이 아무리 $z_0$에 κ°€κΉκ²Œ 닀가가도 $f(z_n)$와 $w_0$ 사이에 적어도 $\epsilon$ 만큼의 간격이 μ‘΄μž¬ν•˜λŠ” 것이닀!

또 λ‹€λ₯΄κ²Œ ν‘œν˜„ν•˜μžλ©΄, κ·Ήν•œμ΄ μ‘΄μž¬ν•  λ•ŒλŠ” β€˜λͺ¨λ“ β€™ $\epsilon$에 λŒ€ν•΄ 뢀등식을 λ§Œμ‘±ν•˜λŠ” $\delta$λ₯Ό 찾을 수 μžˆμ§€λ§Œ, κ·Ήν•œμ§€ μ‘΄μž¬ν•˜μ§€ μ•Šμ„ λ•ŒλŠ” β€˜μ–΄λ–€β€™ $\epsilon$에 λŒ€ν•΄μ„  뢀등식을 λ§Œμ‘±ν•˜λŠ” $\delta$λ₯Ό 찾을 수 μ—†λ‹€λŠ” 말이기도 ν•˜λ‹€!


Example.

(1) $f(z) = 2 \overline{z}$, $\lim_{z \rightarrow i} f(z) = ?$

\[\begin{aligned} \left| f(z) - f(i) \right| &= \left| 2\overline{z} - 2 \overline{i} \right| \\ &= \left| 2z - 2i \right| \\ &= 2 \left| z - i \right| \end{aligned}\]

So, $\left| f(z) - f(i) \right| < \epsilon$ when every $\left| z - i \right| < \frac{\epsilon}{2}$.


(2) $f(z) = \frac{z}{\bar{z}}$, $\lim_{z \rightarrow 0} f(z) = ?$

  • (i) Let $z = x$, $f(z) = \frac{x}{x} = 1$
  • (ii) Let $z = iy$, $f(z) = \frac{iy}{-iy} = -1$

μ„œλ‘œ λ‹€λ₯Έ λ°©ν–₯μ—μ„œμ˜ μ–»λŠ” κ·Ήν•œκ°’μ΄ μΌμΉ˜ν•˜μ§€ μ•ŠκΈ° λ•Œλ¬Έμ— κ·Ήν•œμ΄ μ‘΄μž¬ν•˜μ§€ μ•ŠλŠ”λ‹€.


Theorem 1. When a β€˜limit’ of a function $f(z)$ exists at a point $z_0$, then it is unique.
(κ·Ήν•œκ°’μ΄ 2κ°œκ°€ 될 수 μ—†λ‹€.)

Theorem 2. $f(z) = u(x, y) + i v(x, y)$, $z_0 = x_0 + i y_0$, $w_0 = u_0 + i v_0$.

\[\lim_{(x, y) \rightarrow (x_0, y_0)} u(x, y) = w_0, \lim_{(x, y) \rightarrow (x_0, y_0)} v(x, y) = u_0 \iff \lim_{z \rightarrow z_0} f(z) = w_0\]

즉, real & imaginary partκ°€ 각각 κ·Ήν•œμ„ 가지면, $f(z)$도 κ·Ήν•œμ„ 가지며 κ·Έ 값은 μœ„μ™€ κ°™λ‹€.


Complex Continuity

$f(z)$ is continuous at $z_0$ if β€œ$f(z_0)$ is defined” and β€œ$\lim_{z \rightarrow z_0} f(z) = f(z_0)$”.

For each $\epsilon > 0$, there exist $\delta$ such that

\[\left| f(z) - f(z_0) \right| < \epsilon \quad \textrm{whenever} \quad \left| z - z_0 \right| < \delta\]

Any polynomial $P(z)$ is continuous everywhere.

Theorem 1. A composition of continuous functions is continuous.


Theorem 2. $f(z) = u(x, y) + i v(x, y)$, $z_0 = x_0 + i y_0$.

$f(z)$ is continuous at $z_0$

$\iff$ $u(x, y)$ and $v(x, y)$ are conti. at $(x_0, y_0)$.


Theorem 3. Let $R$ be a closed and bounded set.

Supp. that $f$ is β€œcontinuous” on $R$.

Then there exist $M$ such that

\[\left| f(z) \right| \le M \quad \textrm{for all} \;\; z \in R\]

β€œTheorem 3”은 λ³΅μ†Œ ν‰λ©΄μ—μ„œμ˜ β€œμ΅œλŒ€-μ΅œμ†Œ 정리”라고 λ³Ό 수 μžˆλ‹€!



Complex Derivatives

The derivative of $f$ at $z_0$ is the limit

\[f'(z_0) = \lim_{z \rightarrow z_0} {\frac{f(z) = f(z_0)}{z-z_0}}\]

The function $f$ is said to be β€œdifferentiable” when $f’(z_0)$ exists.

NOTE: differentiable $\ne$ analytic

Analytic Functions

  • $f(z)$ is analytic in an open set $S$, if $f(z)$ is differentiable everywhere in $S$.

  • $f(z)$ is analytic at $z_0$, if $f(z)$ is analytic in some neighborhood of $z_0$.

  • An entire function is a function that is analytic at each point in the entire complex plane.


  • Polynomials are entire functions.
\[P(z) = a_0 + a_1 z + \cdots + a_n z^n\]
  • Rational function
\[f(z) = \frac{P(z)}{Q(z)} \quad (P, Q: \quad \textrm{polynomials})\]

Rational functions are analytic except at the points where $Q(z) \ne 0$.