Complex Analysis - Basic
2020-2νκΈ°, λνμμ βμμ©λ³΅μν¨μλ‘ β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Complex Functions
A function $f$ defined on $S \subset \mathbb{C}$ is a rule that assigns to each $z \in S$ to a complex number $w$.
\[f: S \longrightarrow \mathbb{C}\]
Example.
- $f(z) = \frac{1}{z}$, $z \ne 0$
- $f(z) = z^2$
볡μ ν¨μλ μ μμλ 2μ°¨μμ΄κ³ , 곡μλ 2μ°¨μμ΄κΈ° λλ¬Έμ νλμ κ·Έλνμ visualization νλ κ²μ΄ λΆκ°λ₯ν¨!!
볡μ ν¨μλ real-partμ imaginary-partλ₯Ό κ°κ° λ κ°μ real-valued functionμΌλ‘ λΆλ¦¬ν΄ ννν μλ μμ.
\[f(z) = u(x, y) + i v(x, y)\]
Example.
$f(x) = z^2$, $z = x + iy$
-> $(x+iy)^2 = x^2 - y^2 + i(2xy)$
볡μ ν¨μλ₯Ό polar coordinateλ‘ ννν μλ μμ!
\[f(z) = u(r, \theta) + i v(r, \theta)\]
Example.
$f(z) = z^2$, $z = r e^{i\theta}$
-> ${r^2}e^{2\theta} = r^2 \cos 2\theta + i (r^2 \sin 2\theta)$
볡μ ν¨μμ κ²½μ°, λͺλͺ κ²½μ°μμλ βmulti-valued relationβμ΄ μ λλ μ μμ.
μλ₯Ό λ€λ©΄,
ν¨μ $f(z)$κ° $f(z) = z^{1/2}$λΌλ©΄,
\[z^{1/2} = \pm \sqrt{r} \exp {(i\theta / 2)}\]κ° λλ€.
μ¦, $f(z) = z^{1/2}$μ λν΄μλ νλμ 볡μμ $z$μ λν΄ λ κ°μ ν¨μ«κ° $f(z)$μ΄ μ‘΄μ¬ν μ μλ€λ κ²μ΄λ€.
μ΄λ λ―, λͺλͺ 볡μ ν¨μλ βmulti-valued relationβμ 보μ΄κΈ°λ νλλ°, 보ν΅μ multi-valued relationμ single-valued relationμΌλ‘ μ μ ν restrictionνμ¬ ν΄κ²°νλ€.
Complex Limit
As $z$ approaches to $z_0$, $f(z)$ approaches to $w_0$.
\[\lim_{z \rightarrow z_0} {f(z)} = w_0\]μ€μ ν¨μμμμ κ·Ήνμ β$\epsilon$-$\delta$ λ Όλ²βμ μν΄ μ μκ° λμλ€. 볡μ ν¨μμμμ κ·Ήν μμ β$\epsilon$-$\delta$ λ Όλ²βμ μ¬μ©νλ€.
For each $\epsilon > 0$, there is $\delta$ such that
\[\left| f(z) - w_0 \right| < \epsilon \quad \textrm{whenever} \quad 0 < \left| z - z_0 \right| < \delta\]μ¦, 곡μ μμμ μ΄λ€ $\epsilon$μ μ‘λλΌλ, μ μμμμ μμ λΆλ±μμ λ§μ‘±νλ μ μ ν $\delta$λ₯Ό μ‘μ μ μλ€λ κ²μ λ§νλ€.
λ¨, κ·Ήνμ΄ μ‘΄μ¬νμ§ μλ κ²½μ°λ μλ€. μ΄ κ²½μ°λ μλμ κ°μ΄ λ¬μ¬νλ€.
βThere exist a sequence $(z_n) \quad (z_n \ne z_0)$ s.t. $z_n \rightarrow z_0$ but $\left| f(z_n) \rightarrow w_0 \right| \ge \epsilon > 0$ for some $\epsilon$β
μ¦, $z_n$μ΄ μ무리 $z_0$μ κ°κΉκ² λ€κ°κ°λ $f(z_n)$μ $w_0$ μ¬μ΄μ μ μ΄λ $\epsilon$ λ§νΌμ κ°κ²©μ΄ μ‘΄μ¬νλ κ²μ΄λ€!
λ λ€λ₯΄κ² νννμλ©΄, κ·Ήνμ΄ μ‘΄μ¬ν λλ βλͺ¨λ β $\epsilon$μ λν΄ λΆλ±μμ λ§μ‘±νλ $\delta$λ₯Ό μ°Ύμ μ μμ§λ§, κ·Ήνμ§ μ‘΄μ¬νμ§ μμ λλ βμ΄λ€β $\epsilon$μ λν΄μ λΆλ±μμ λ§μ‘±νλ $\delta$λ₯Ό μ°Ύμ μ μλ€λ λ§μ΄κΈ°λ νλ€!
Example.
(1) $f(z) = 2 \overline{z}$, $\lim_{z \rightarrow i} f(z) = ?$
\[\begin{aligned} \left| f(z) - f(i) \right| &= \left| 2\overline{z} - 2 \overline{i} \right| \\ &= \left| 2z - 2i \right| \\ &= 2 \left| z - i \right| \end{aligned}\]So, $\left| f(z) - f(i) \right| < \epsilon$ when every $\left| z - i \right| < \frac{\epsilon}{2}$.
(2) $f(z) = \frac{z}{\bar{z}}$, $\lim_{z \rightarrow 0} f(z) = ?$
- (i) Let $z = x$, $f(z) = \frac{x}{x} = 1$
- (ii) Let $z = iy$, $f(z) = \frac{iy}{-iy} = -1$
μλ‘ λ€λ₯Έ λ°©ν₯μμμ μ»λ κ·Ήνκ°μ΄ μΌμΉνμ§ μκΈ° λλ¬Έμ κ·Ήνμ΄ μ‘΄μ¬νμ§ μλλ€.
Theorem 1. When a βlimitβ of a function $f(z)$ exists at a point $z_0$, then it is unique.
(κ·Ήνκ°μ΄ 2κ°κ° λ μ μλ€.)
Theorem 2. $f(z) = u(x, y) + i v(x, y)$, $z_0 = x_0 + i y_0$, $w_0 = u_0 + i v_0$.
\[\lim_{(x, y) \rightarrow (x_0, y_0)} u(x, y) = w_0, \lim_{(x, y) \rightarrow (x_0, y_0)} v(x, y) = u_0 \iff \lim_{z \rightarrow z_0} f(z) = w_0\]μ¦, real & imaginary partκ° κ°κ° κ·Ήνμ κ°μ§λ©΄, $f(z)$λ κ·Ήνμ κ°μ§λ©° κ·Έ κ°μ μμ κ°λ€.
Complex Continuity
$f(z)$ is continuous at $z_0$ if β$f(z_0)$ is definedβ and β$\lim_{z \rightarrow z_0} f(z) = f(z_0)$β.
For each $\epsilon > 0$, there exist $\delta$ such that
\[\left| f(z) - f(z_0) \right| < \epsilon \quad \textrm{whenever} \quad \left| z - z_0 \right| < \delta\]Any polynomial $P(z)$ is continuous everywhere.
Theorem 1. A composition of continuous functions is continuous.
Theorem 2. $f(z) = u(x, y) + i v(x, y)$, $z_0 = x_0 + i y_0$.
$f(z)$ is continuous at $z_0$
$\iff$ $u(x, y)$ and $v(x, y)$ are conti. at $(x_0, y_0)$.
Theorem 3. Let $R$ be a closed and bounded set.
Supp. that $f$ is βcontinuousβ on $R$.
Then there exist $M$ such that
\[\left| f(z) \right| \le M \quad \textrm{for all} \;\; z \in R\]βTheorem 3βμ 볡μ νλ©΄μμμ βμ΅λ-μ΅μ μ 리βλΌκ³ λ³Ό μ μλ€!
Complex Derivatives
The derivative of $f$ at $z_0$ is the limit
\[f'(z_0) = \lim_{z \rightarrow z_0} {\frac{f(z) = f(z_0)}{z-z_0}}\]The function $f$ is said to be βdifferentiableβ when $fβ(z_0)$ exists.
NOTE: differentiable $\ne$ analytic
Analytic Functions
-
$f(z)$ is analytic in an open set $S$, if $f(z)$ is differentiable everywhere in $S$.
-
$f(z)$ is analytic at $z_0$, if $f(z)$ is analytic in some neighborhood of $z_0$.
-
An entire function is a function that is analytic at each point in the entire complex plane.
- Polynomials are entire functions.
- Rational function
Rational functions are analytic except at the points where $Q(z) \ne 0$.