2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

6 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

Cauchy-Riemann Equations

β€œμ£Όμ–΄μ§„ λ³΅μ†Œν•¨μˆ˜ $f(z) = u(x, y) + i v(x, y)$에 λŒ€ν•΄, μ‹€μˆ˜λΆ€ $u(x, y)$와 ν—ˆμˆ˜λΆ€ $v(x, y)$λ₯Ό 보고 analytic ν•¨μˆ˜μž„μ„ 보μž₯ν•  수 μžˆμ„κΉŒ?”

$f$ is analytic in a domain $D$

$\iff$ the first partial derivatives of $u$ and $v$ satisfy

the Cauchy-Riemann equations: $u_x = v_y$, $u_y = -v_x$

proof.

$f$ is differentiable $\implies$ $u$, $v$ satisfy the Cauchy-Riemann Equations.

For

\[f'(z) = \lim_{\Delta z \rightarrow 0} \frac{f(z+\Delta z) - f(z)}{\Delta z}\]

Think of two direction $\Delta x$ and $i \Delta y$, then

\[\begin{aligned} f'(z) &= \lim_{\Delta x \rightarrow 0} \frac{f(z+\Delta x) - f(z)}{\Delta x} \\ &= \lim_{\Delta x \rightarrow 0} \frac{u(x+\Delta x, y) + v(x+\Delta x, y) i - u(x, y) - v(x, y) i}{\Delta x} \\ &= \lim_{\Delta x \rightarrow 0} \frac{u(x+\Delta x, y) - u(x, y) + v(x+\Delta x, y) i - v(x, y) i}{\Delta x} \\ &= u_x + v_x i \end{aligned}\]

λ§ˆμ°¬κ°€μ§€λ‘œ $i \Delta y$에 λŒ€ν•΄μ„œ $u(x, y)$, $v(x, y)$에 λŒ€ν•΄ λ―ΈλΆ„ν•˜λ©΄ μ•„λž˜μ™€ κ°™λ‹€.

\[\begin{aligned} f'(z) &= \lim_{\Delta y \rightarrow 0} \frac{f(z+\Delta y) - f(z)}{\Delta y} \\ &= \lim_{\Delta y \rightarrow 0} \frac{u(x, y+\Delta y) - u(x, y) + v(x, y+\Delta y) i - v(x, y) i}{i \Delta y} \\ &= \frac{u_y}{i} + v_y \end{aligned}\]

μ΄λ•Œ, differentiableν•˜κΈ° μœ„ν•΄μ„  κ·Ήν•œμ΄ μ‘΄μž¬ν•΄μ•Ό ν•˜λ―€λ‘œ,

\[u_x + u_y = \frac{u_y}{i} + v_y\]

λ”°λΌμ„œ

\[\begin{aligned} u_x &= v_y \\ u_y &= -v_x \end{aligned}\]

$u, v$ have continuous partial derivatives satisfy the Cauchy-Riemann equations $\implies$ $f$ is analytic.

Let $\Delta u = u(x_0 + \delta x, y_0 + \delta y) - u(x_0, y_0)$.

Then, because the first order partial derivative of $u$ are continuous at $(x_0, y_0)$,

\[\Delta u = u_x (x_0, y_0) \Delta x + u_y (x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y\]

where $\epsilon_1$ and $\epsilon_2$ tend to zero as $\Delta x$, $\Delta y$ approach to zero.

Likewise, we can think of $\Delta v$, then

\[\begin{aligned} f'(z) &= \lim_{\Delta z \rightarrow 0} \frac{f(z+\Delta z) - f(z)}{\Delta z} \\ &= \lim_{(\Delta x + i \Delta y) \rightarrow 0} \frac{\Delta u + i \Delta v}{\Delta x + i \Delta y} \\ &= \lim_{(\Delta x + i \Delta y) \rightarrow 0} \frac{(u_x \Delta x + u_y \Delta y) - i(v_x \Delta x + v_y \Delta y) + E}{\Delta x + i \Delta y} \\ &= \lim_{(\Delta x + i \Delta y) \rightarrow 0} \frac{(u_x \Delta x + u_y \Delta y) - i(-u_y \Delta x + u_x \Delta y) + E}{\Delta x + i \Delta y} \quad (\textrm{C-R equation}) \\ &= \lim_{(\Delta x + i \Delta y) \rightarrow 0} \frac{u_x (\Delta x + i \Delta y) + u_y (-i\Delta x + \Delta y)}{\Delta x + i \Delta y} \\ &= u_x - i u_y \quad (\textrm{C-R equation}) \\ &= u_x + i v_x \end{aligned}\]


example.

Supp. that $f(z)$ is analytic in a domain $D$, and $\left| f(z) \right| = k = \textrm{constant}$ in $D$. Show that $f(z)$ is constant.


Polar Coordinate

\[f(z) = u(r, \theta) + i v(r, \theta), \quad z=r e^{i\theta}\]

Cauchy-Riemann equation for polar coordinate

\[u_r = \frac{1}{r}u_\theta, \quad v_r = - \frac{1}{r} u_{\theta}\]



Harmonics functions & Laplace’s Equation

A real-valued function $H(x, y)$ is harmonic in a domain $D$, if it satisfies β€œLaplace equation”

\[\nabla^2 H = H_{xx} + H_{yy} = 0\]


Theorem.

If $f(z)=u(x, y) + i v(x, y)$ is analytic in a domain $D$,
then both $u$ and $v$ are Harmonic functions.

If two harmonic functions $u$ and $v$ satisfy the Cauchy-Riemann equations in a domain $D$,
then $f(z) = u(x, y) + i v(x, y)$ is analytic in $D$.

In this case, $v$ is called a β€œharmonic conjugate function of $u$” in $D$.