Elementary Complex Functions
2020-2νκΈ°, λνμμ βμμ©λ³΅μν¨μλ‘ β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Exponential Functions
\[e^z \quad \textrm{or} \quad \exp z\]For $z = x + iy$,
\[e^z = e^x (\cos y + i \sin y)\]- $e^z = e^{z + 2\pi i}$
Trigonometric Functions
\[\begin{aligned} \cos z &= \frac{1}{2} (e^{iz} + e^{-iz}) \\ \sin z &= \frac{1}{2i} (e^{iz} - e^{-iz}) \end{aligned}\]- $\cos z = \cos x \cosh y - i \sin x \sinh y$
Let $z = x + iy$
\[\begin{aligned} \cos z &= \frac{1}{2} (e^{iz} + e^{-iz}) \\ &= \frac{1}{2} (e^{ix - y} + e^{-ix + y}) \\ &= \frac{1}{2} (e^{-y}(\cos x + i \sin x) + e^{y} (\cos x - i \sin x)) \\ &= \cos x \frac{(e^y + e^{-y})}{2} - i \sin x \frac{(e^y - e^{-y})}{2} \\ &= \cos x \cosh y - i \sin x \sinh y \end{aligned}\]- $\cos^2 x + \sin^2 z = 1$
Hyperbolic Functions
\[\begin{aligned} \cosh z = \frac{e^z + e^{-z}}{2} \\ \sinh z = \frac{e^z - e^{-z}}{2} \end{aligned}\]Some interesting, unexpected relations
\[\begin{aligned} \cosh iz = \cos z, \quad \sinh iz = i \sin z \\ \cos iz = \cosh z, \quad \sin iz = i \sinh z \end{aligned}\]In real domain, there is no relation between $\cos x$ and $\cosh x$!!
(Complex) Logarithm
\[w = \log z \iff e^w = z \quad (z \ne 0)\]μ€μ μμμμλ $e^x$κ° 1-1 ν¨μμ΄κΈ° λλ¬Έμ real logarithmμ ν¨μλ‘μ well-definedλλ€.
νμ§λ§, 볡μ μμμμλ $e^w = e^{w + 2n\pi i}$μ΄κΈ° λλ¬Έμ, $e^w = z$λ₯Ό λ§μ‘±νλ $w$κ° λ¬΄μν λ§λ€. λ°λΌμ complex loarithmμΈ $\log z$λ single-valued functionμ΄ μλλΌ multi-valued functionμ΄ λλ€!
\[\log z = \log \left| z \right| + i \arg z \quad (z\ne0)\]- $e^{\log z} = z$
- $\log e^z = z \pm i 2n\pi$
- $\log 1 = 0 \pm 2n \pi i$
- $\log -1 = 0 + (\pi \pm 2n \pi) i $
Principal value of $\log z$
\[\textrm{Log} \; z = \log \left| z \right| + i \; \textrm{Arg} \; z\]branch
(1) Restric $\theta$ as $-\pi < \theta < \pi$. Then
\[\log z = \log r + i \theta \quad \textrm{for} \quad z = r e^{i \theta}\]is single-valued and it is continuous function!
- A branch of multi-valued function $f$ is any single-valued function $F(z)$ that is analytic in some domain.
- A branch cut is a partition of a line or a curve that is introduced in order to define a branch $F$.
- A branch point is any point that is ccommon to all branch cuts of $f$.
Power Functions
\[z^c = e^{c \log z}, \quad c \; : \; \textrm{complex number}\]Principal value of $z^c$ is defined by
\[\textrm{P.V.} \; z^c = e^{c \; \textrm{Log} \; z}\]- If $c$ is natural number, then $z^n$ is sinle-valued.
- If $c = 1/n$, then $z^n$ is $n$-th valued.
- If $c$ is irrational or not real, then $z^c$ is infinitely many-valued.
- $i^{-i}$