Contour Integrals
2020-2νκΈ°, λνμμ βμμ©λ³΅μν¨μλ‘ β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Complex Contour
- $f(z)$: a complex function
- $C$: a curve in a complex plane
μ€μ μμ $\mathbb{R}^2$μμμ contourλ $\vec{r}(t)=(x(t), y(t))$μ κ°μ΄ parametrized νμ¬ νννλ€.
κ·Έλ°λ°, 볡μ μμ $\mathbb{C}$μμμ contourλ $z(t) = x(t) + i y(t)$μ κ°μ΄ νννλ€. $\mathbb{R}^2$μμμ βκ±°μβ λΉμ·νλ€.
derivatives and integrals
Let define $w(t)$ as $w(t) : [a, b] \rightarrow \mathbb{C}$
\[w(t) = u(t) + i v(t)\]Then,
1. derivatives
\[w'(t) = u'(t) + i v'(t)\]2. integrals
\[\int^{b}_{a} w(t) dt = \int^{b}_{a} u(t) dt + i \int^{b}_{a} v(t) dt\]parametric curves
A parametrized curve is a continuous function $z(t): [a, b] \rightarrow \mathbb{C}$.
1. smooth: β$zβ(t)$ existsβ and βis continuousβ on $[a, b]$, and β$zβ(t) \ne 0$β.
2. piecewise smooth: μ-λ΅
3. closed: $z(a) = z(b)$
4. simple: if $t \ne s$, $z(t) \ne z(s)$
5. positive orientation: counter clockwise
equivalent contour
For two curves $z_1(t)$, $z_2(t)$,
\[z_1(t): [a, b] \rightarrow \mathbb{C}, \quad z_2(t): [c, d] \rightarrow \mathbb{C}\]are equivalent, if there is a function $t(s)$
\[s \rightarrow t(s): [c, d] \rightarrow [a, b]\]so that $tβ(s) > 0$ and $z_2(s) = z_1(t(s))$.
(cf) $tβ(s) > 0$ μ‘°κ±΄μ΄ νμν μ΄μ λ, λ§μ½ $tβ(s) < 0$λΌλ©΄, λ 컀λΈμ μμ§μ΄λ λ°©ν₯μ΄ λ¬λΌμ§κ² λλ€. λν, λ§μ½μ $tβ(s) = 0$μ΄λΌλ©΄, ${z_2}β = {z_1}β \frac{dt}{ds}$μμ $\frac{dt}{ds} = 0$μ΄ λμ΄μ μ¬λ°λ₯Έ κ°μ μ»μ§ λͺ»νκ² λλ€. (ν β¦ μ€λͺ μ΄ λ§€λλ½μ§ λͺ»νλ€ γ γ )
Length of curve $C$
\[\begin{aligned} \textrm{length of } C &= \int^{b}_{a} \left| z'(t) \right| dt \\ &= \int^{b}_{a} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \end{aligned}\]μ°Έκ³ λ‘, μ΄λ curveμ κΈΈμ΄λ parametrization functionμ μμ‘΄νμ§ μλλ€. μ¦, parameterizationμ΄ λ¬λΌλ κ°μ κΈΈμ΄λ₯Ό κ°μ§ μ μλ€λ λ§μ΄λ€.
Contour Integrals
Let $C$ be a smooth curve parametrized by $z(t): [a, b] \rightarrow \mathbb{C}$.
Then, the integral of $f$ along a curve $C$ is
\[\int_{C} f(z) dz = \int^{b}_{a} f(z(t)) z'(t) dt\]μ΄λ, βcurve $C$μ λν ν¨μ $f$μ contour μ λΆμ curve $C$μ parametrizationμ μμ‘΄νμ§ μλλ€.β μ¦, equivalent curveμ λν μ λΆμ λμΌν κ²°κ³Όλ₯Ό λ±λλ€λ λ§μ΄λ€.
Existence of Contour Integral
βIf $f$ is continuous, then $\int_{C} f(z) dz$ existsβ
proof.
$f(z) = f(x+iy) = u(x,y) + i v(x,y)$
$z(t): [a, b] \rightarrow \mathbb{C}$ is a parametized curve $C$.
Then
\[\begin{aligned} \int_{C} f(z) dz &= \int^{b}_{a} \left[ u(x(t), y(t)) + i v(x(t), y(t)) \right] \left( x'(t) + i y'(t) \right) dt \\ &= \int^{b}_{a} (ux' - vy') + i (uy' + vx') dt \\ &= \int^{b}_{a} (ux' - vy') dt + i \int^{b}_{a} (uy' + vx') dt \end{aligned}\]μ΄λ, $uxβ - vyβ$ κ·Έλ¦¬κ³ $uyβ + vwβ$κ° continuous functionμ΄κΈ° λλ¬Έμ μ€μμμμ μ λΆμ λν μ μΌμ±μ μν΄ Contour Integral on Complex Planeμ μ λΆλ μ‘΄μ¬νλ€! $\blacksquare$