Contour Integrals
2020-2ํ๊ธฐ, ๋ํ์์ โ์์ฉ๋ณต์ํจ์๋ก โ ์์ ์ ๋ฃ๊ณ ๊ณต๋ถํ ๋ฐ๋ฅผ ์ ๋ฆฌํ ๊ธ์ ๋๋ค. ์ง์ ์ ์ธ์ ๋ ํ์์ ๋๋ค :)
Complex Contour
- $f(z)$: a complex function
- $C$: a curve in a complex plane
์ค์ ์์ญ $\mathbb{R}^2$์์์ contour๋ $\vec{r}(t)=(x(t), y(t))$์ ๊ฐ์ด parametrized ํ์ฌ ํํํ๋ค.
๊ทธ๋ฐ๋ฐ, ๋ณต์ ์์ญ $\mathbb{C}$์์์ contour๋ $z(t) = x(t) + i y(t)$์ ๊ฐ์ด ํํํ๋ค. $\mathbb{R}^2$์์์ โ๊ฑฐ์โ ๋น์ทํ๋ค.
derivatives and integrals
Let define $w(t)$ as $w(t) : [a, b] \rightarrow \mathbb{C}$
\[w(t) = u(t) + i v(t)\]Then,
1. derivatives
\[w'(t) = u'(t) + i v'(t)\]2. integrals
\[\int^{b}_{a} w(t) dt = \int^{b}_{a} u(t) dt + i \int^{b}_{a} v(t) dt\]parametric curves
A parametrized curve is a continuous function $z(t): [a, b] \rightarrow \mathbb{C}$.
1. smooth: โ$zโ(t)$ existsโ and โis continuousโ on $[a, b]$, and โ$zโ(t) \ne 0$โ.
2. piecewise smooth: ์-๋ต
3. closed: $z(a) = z(b)$
4. simple: if $t \ne s$, $z(t) \ne z(s)$
5. positive orientation: counter clockwise
equivalent contour
For two curves $z_1(t)$, $z_2(t)$,
\[z_1(t): [a, b] \rightarrow \mathbb{C}, \quad z_2(t): [c, d] \rightarrow \mathbb{C}\]are equivalent, if there is a function $t(s)$
\[s \rightarrow t(s): [c, d] \rightarrow [a, b]\]so that $tโ(s) > 0$ and $z_2(s) = z_1(t(s))$.
(cf) $tโ(s) > 0$ ์กฐ๊ฑด์ด ํ์ํ ์ด์ ๋, ๋ง์ฝ $tโ(s) < 0$๋ผ๋ฉด, ๋ ์ปค๋ธ์ ์์ง์ด๋ ๋ฐฉํฅ์ด ๋ฌ๋ผ์ง๊ฒ ๋๋ค. ๋ํ, ๋ง์ฝ์ $tโ(s) = 0$์ด๋ผ๋ฉด, ${z_2}โ = {z_1}โ \frac{dt}{ds}$์์ $\frac{dt}{ds} = 0$์ด ๋์ด์ ์ฌ๋ฐ๋ฅธ ๊ฐ์ ์ป์ง ๋ชปํ๊ฒ ๋๋ค. (ํ โฆ ์ค๋ช ์ด ๋งค๋๋ฝ์ง ๋ชปํ๋ค ใ ใ )
Length of curve $C$
\[\begin{aligned} \textrm{length of } C &= \int^{b}_{a} \left| z'(t) \right| dt \\ &= \int^{b}_{a} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \end{aligned}\]์ฐธ๊ณ ๋ก, ์ด๋ curve์ ๊ธธ์ด๋ parametrization function์ ์์กดํ์ง ์๋๋ค. ์ฆ, parameterization์ด ๋ฌ๋ผ๋ ๊ฐ์ ๊ธธ์ด๋ฅผ ๊ฐ์ง ์ ์๋ค๋ ๋ง์ด๋ค.
Contour Integrals
Let $C$ be a smooth curve parametrized by $z(t): [a, b] \rightarrow \mathbb{C}$.
Then, the integral of $f$ along a curve $C$ is
\[\int_{C} f(z) dz = \int^{b}_{a} f(z(t)) z'(t) dt\]์ด๋, โcurve $C$์ ๋ํ ํจ์ $f$์ contour ์ ๋ถ์ curve $C$์ parametrization์ ์์กดํ์ง ์๋๋ค.โ ์ฆ, equivalent curve์ ๋ํ ์ ๋ถ์ ๋์ผํ ๊ฒฐ๊ณผ๋ฅผ ๋ฑ๋๋ค๋ ๋ง์ด๋ค.
Existence of Contour Integral
โIf $f$ is continuous, then $\int_{C} f(z) dz$ existsโ
proof.
$f(z) = f(x+iy) = u(x,y) + i v(x,y)$
$z(t): [a, b] \rightarrow \mathbb{C}$ is a parametized curve $C$.
Then
\[\begin{aligned} \int_{C} f(z) dz &= \int^{b}_{a} \left[ u(x(t), y(t)) + i v(x(t), y(t)) \right] \left( x'(t) + i y'(t) \right) dt \\ &= \int^{b}_{a} (ux' - vy') + i (uy' + vx') dt \\ &= \int^{b}_{a} (ux' - vy') dt + i \int^{b}_{a} (uy' + vx') dt \end{aligned}\]์ด๋, $uxโ - vyโ$ ๊ทธ๋ฆฌ๊ณ $uyโ + vwโ$๊ฐ continuous function์ด๊ธฐ ๋๋ฌธ์ ์ค์์์์ ์ ๋ถ์ ๋ํ ์ ์ผ์ฑ์ ์ํด Contour Integral on Complex Plane์ ์ ๋ถ๋ ์กด์ฌํ๋ค! $\blacksquare$