2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

4 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

Complex Contour

\[\int_{C} f(z) dz\]
  • $f(z)$: a complex function
  • $C$: a curve in a complex plane

์‹ค์ˆ˜ ์˜์—ญ $\mathbb{R}^2$์—์„œ์˜ contour๋Š” $\vec{r}(t)=(x(t), y(t))$์™€ ๊ฐ™์ด parametrized ํ•˜์—ฌ ํ‘œํ˜„ํ–ˆ๋‹ค.

๊ทธ๋Ÿฐ๋ฐ, ๋ณต์†Œ ์˜์—ญ $\mathbb{C}$์—์„œ์˜ contour๋Š” $z(t) = x(t) + i y(t)$์™€ ๊ฐ™์ด ํ‘œํ˜„ํ•œ๋‹ค. $\mathbb{R}^2$์—์„œ์™€ โ€˜๊ฑฐ์˜โ€™ ๋น„์Šทํ•˜๋‹ค.

derivatives and integrals

Let define $w(t)$ as $w(t) : [a, b] \rightarrow \mathbb{C}$

\[w(t) = u(t) + i v(t)\]

Then,

1. derivatives

\[w'(t) = u'(t) + i v'(t)\]

2. integrals

\[\int^{b}_{a} w(t) dt = \int^{b}_{a} u(t) dt + i \int^{b}_{a} v(t) dt\]

parametric curves

A parametrized curve is a continuous function $z(t): [a, b] \rightarrow \mathbb{C}$.

1. smooth: โ€œ$zโ€™(t)$ existsโ€ and โ€œis continuousโ€ on $[a, b]$, and โ€œ$zโ€™(t) \ne 0$โ€.

2. piecewise smooth: ์ƒ-๋žต

3. closed: $z(a) = z(b)$

4. simple: if $t \ne s$, $z(t) \ne z(s)$

5. positive orientation: counter clockwise

equivalent contour

For two curves $z_1(t)$, $z_2(t)$,

\[z_1(t): [a, b] \rightarrow \mathbb{C}, \quad z_2(t): [c, d] \rightarrow \mathbb{C}\]

are equivalent, if there is a function $t(s)$

\[s \rightarrow t(s): [c, d] \rightarrow [a, b]\]

so that $tโ€™(s) > 0$ and $z_2(s) = z_1(t(s))$.

(cf) $tโ€™(s) > 0$ ์กฐ๊ฑด์ด ํ•„์š”ํ•œ ์ด์œ ๋Š”, ๋งŒ์•ฝ $tโ€™(s) < 0$๋ผ๋ฉด, ๋‘ ์ปค๋ธŒ์˜ ์›€์ง์ด๋Š” ๋ฐฉํ–ฅ์ด ๋‹ฌ๋ผ์ง€๊ฒŒ ๋œ๋‹ค. ๋˜ํ•œ, ๋งŒ์•ฝ์— $tโ€™(s) = 0$์ด๋ผ๋ฉด, ${z_2}โ€™ = {z_1}โ€™ \frac{dt}{ds}$์—์„œ $\frac{dt}{ds} = 0$์ด ๋˜์–ด์„œ ์˜ฌ๋ฐ”๋ฅธ ๊ฐ’์„ ์–ป์ง€ ๋ชปํ•˜๊ฒŒ ๋œ๋‹ค. (ํ โ€ฆ ์„ค๋ช…์ด ๋งค๋„๋Ÿฝ์ง€ ๋ชปํ•˜๋„ค ใ… ใ… )

Length of curve $C$

\[\begin{aligned} \textrm{length of } C &= \int^{b}_{a} \left| z'(t) \right| dt \\ &= \int^{b}_{a} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \end{aligned}\]

์ฐธ๊ณ ๋กœ, ์ด๋•Œ curve์˜ ๊ธธ์ด๋Š” parametrization function์— ์˜์กดํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ฆ‰, parameterization์ด ๋‹ฌ๋ผ๋„ ๊ฐ™์€ ๊ธธ์ด๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋‹ค๋Š” ๋ง์ด๋‹ค.



Contour Integrals

Let $C$ be a smooth curve parametrized by $z(t): [a, b] \rightarrow \mathbb{C}$.

Then, the integral of $f$ along a curve $C$ is

\[\int_{C} f(z) dz = \int^{b}_{a} f(z(t)) z'(t) dt\]

์ด๋•Œ, โ€œcurve $C$์— ๋Œ€ํ•œ ํ•จ์ˆ˜ $f$์˜ contour ์ ๋ถ„์€ curve $C$์˜ parametrization์— ์˜์กดํ•˜์ง€ ์•Š๋Š”๋‹ค.โ€ ์ฆ‰, equivalent curve์— ๋Œ€ํ•œ ์ ๋ถ„์„ ๋™์ผํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ฑ‰๋Š”๋‹ค๋Š” ๋ง์ด๋‹ค.

Existence of Contour Integral

โ€œIf $f$ is continuous, then $\int_{C} f(z) dz$ existsโ€

proof.

$f(z) = f(x+iy) = u(x,y) + i v(x,y)$

$z(t): [a, b] \rightarrow \mathbb{C}$ is a parametized curve $C$.

Then

\[\begin{aligned} \int_{C} f(z) dz &= \int^{b}_{a} \left[ u(x(t), y(t)) + i v(x(t), y(t)) \right] \left( x'(t) + i y'(t) \right) dt \\ &= \int^{b}_{a} (ux' - vy') + i (uy' + vx') dt \\ &= \int^{b}_{a} (ux' - vy') dt + i \int^{b}_{a} (uy' + vx') dt \end{aligned}\]

์ด๋•Œ, $uxโ€™ - vyโ€™$ ๊ทธ๋ฆฌ๊ณ  $uyโ€™ + vwโ€™$๊ฐ€ continuous function์ด๊ธฐ ๋•Œ๋ฌธ์— ์‹ค์ˆ˜์—์„œ์˜ ์ ๋ถ„์— ๋Œ€ํ•œ ์œ ์ผ์„ฑ์— ์˜ํ•ด Contour Integral on Complex Plane์˜ ์ ๋ถ„๋„ ์กด์žฌํ•œ๋‹ค! $\blacksquare$