2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

4 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

Complex Contour

\[\int_{C} f(z) dz\]
  • $f(z)$: a complex function
  • $C$: a curve in a complex plane

μ‹€μˆ˜ μ˜μ—­ $\mathbb{R}^2$μ—μ„œμ˜ contourλŠ” $\vec{r}(t)=(x(t), y(t))$와 같이 parametrized ν•˜μ—¬ ν‘œν˜„ν–ˆλ‹€.

그런데, λ³΅μ†Œ μ˜μ—­ $\mathbb{C}$μ—μ„œμ˜ contourλŠ” $z(t) = x(t) + i y(t)$와 같이 ν‘œν˜„ν•œλ‹€. $\mathbb{R}^2$μ—μ„œμ™€ β€˜κ±°μ˜β€™ λΉ„μŠ·ν•˜λ‹€.

derivatives and integrals

Let define $w(t)$ as $w(t) : [a, b] \rightarrow \mathbb{C}$

\[w(t) = u(t) + i v(t)\]

Then,

1. derivatives

\[w'(t) = u'(t) + i v'(t)\]

2. integrals

\[\int^{b}_{a} w(t) dt = \int^{b}_{a} u(t) dt + i \int^{b}_{a} v(t) dt\]

parametric curves

A parametrized curve is a continuous function $z(t): [a, b] \rightarrow \mathbb{C}$.

1. smooth: β€œ$z’(t)$ exists” and β€œis continuous” on $[a, b]$, and β€œ$z’(t) \ne 0$”.

2. piecewise smooth: 생-랡

3. closed: $z(a) = z(b)$

4. simple: if $t \ne s$, $z(t) \ne z(s)$

5. positive orientation: counter clockwise

equivalent contour

For two curves $z_1(t)$, $z_2(t)$,

\[z_1(t): [a, b] \rightarrow \mathbb{C}, \quad z_2(t): [c, d] \rightarrow \mathbb{C}\]

are equivalent, if there is a function $t(s)$

\[s \rightarrow t(s): [c, d] \rightarrow [a, b]\]

so that $t’(s) > 0$ and $z_2(s) = z_1(t(s))$.

(cf) $t’(s) > 0$ 쑰건이 ν•„μš”ν•œ μ΄μœ λŠ”, λ§Œμ•½ $t’(s) < 0$라면, 두 컀브의 μ›€μ§μ΄λŠ” λ°©ν–₯이 λ‹¬λΌμ§€κ²Œ λœλ‹€. λ˜ν•œ, λ§Œμ•½μ— $t’(s) = 0$이라면, ${z_2}’ = {z_1}’ \frac{dt}{ds}$μ—μ„œ $\frac{dt}{ds} = 0$이 λ˜μ–΄μ„œ μ˜¬λ°”λ₯Έ 값을 얻지 λͺ»ν•˜κ²Œ λœλ‹€. (흠… μ„€λͺ…이 λ§€λ„λŸ½μ§€ λͺ»ν•˜λ„€ γ… γ… )

Length of curve $C$

\[\begin{aligned} \textrm{length of } C &= \int^{b}_{a} \left| z'(t) \right| dt \\ &= \int^{b}_{a} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \end{aligned}\]

참고둜, μ΄λ•Œ curve의 κΈΈμ΄λŠ” parametrization function에 μ˜μ‘΄ν•˜μ§€ μ•ŠλŠ”λ‹€. 즉, parameterization이 달라도 같은 길이λ₯Ό κ°€μ§ˆ 수 μžˆλ‹€λŠ” 말이닀.



Contour Integrals

Let $C$ be a smooth curve parametrized by $z(t): [a, b] \rightarrow \mathbb{C}$.

Then, the integral of $f$ along a curve $C$ is

\[\int_{C} f(z) dz = \int^{b}_{a} f(z(t)) z'(t) dt\]

μ΄λ•Œ, β€œcurve $C$에 λŒ€ν•œ ν•¨μˆ˜ $f$의 contour 적뢄은 curve $C$의 parametrization에 μ˜μ‘΄ν•˜μ§€ μ•ŠλŠ”λ‹€.” 즉, equivalent curve에 λŒ€ν•œ 적뢄을 λ™μΌν•œ κ²°κ³Όλ₯Ό λ±‰λŠ”λ‹€λŠ” 말이닀.

Existence of Contour Integral

β€œIf $f$ is continuous, then $\int_{C} f(z) dz$ exists”

proof.

$f(z) = f(x+iy) = u(x,y) + i v(x,y)$

$z(t): [a, b] \rightarrow \mathbb{C}$ is a parametized curve $C$.

Then

\[\begin{aligned} \int_{C} f(z) dz &= \int^{b}_{a} \left[ u(x(t), y(t)) + i v(x(t), y(t)) \right] \left( x'(t) + i y'(t) \right) dt \\ &= \int^{b}_{a} (ux' - vy') + i (uy' + vx') dt \\ &= \int^{b}_{a} (ux' - vy') dt + i \int^{b}_{a} (uy' + vx') dt \end{aligned}\]

μ΄λ•Œ, $ux’ - vy’$ 그리고 $uy’ + vw’$κ°€ continuous function이기 λ•Œλ¬Έμ— μ‹€μˆ˜μ—μ„œμ˜ 적뢄에 λŒ€ν•œ μœ μΌμ„±μ— μ˜ν•΄ Contour Integral on Complex Plane의 적뢄도 μ‘΄μž¬ν•œλ‹€! $\blacksquare$