2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

3 minute read

2020-2ν•™κΈ°, λŒ€ν•™μ—μ„œ β€˜μ‘μš©λ³΅μ†Œν•¨μˆ˜λ‘ β€™ μˆ˜μ—…μ„ λ“£κ³  κ³΅λΆ€ν•œ λ°”λ₯Ό μ •λ¦¬ν•œ κΈ€μž…λ‹ˆλ‹€. 지적은 μ–Έμ œλ‚˜ ν™˜μ˜μž…λ‹ˆλ‹€ :)

Example.

\[\int_{C} \frac{1}{z} dz\]

If $C: \left| z \right| = 1$, then (쀀식) = $2\pi i$.

이걸 ν™•μž₯ν•˜λ©΄,

\[\int_{C} \frac{1}{(z-z_0)^m} dz, \quad (m=1, 2, ...)\]

where $C: z(t) = z_0 + r e^{it}$ with $0 \le t \le 2\pi$.

If $m=1$, (쀀식) = $2\pi i$

If $m \ne 1$, (쀀식) = 0

(μ‹€μ œλ‘œ 계산해보면, μ €λ ‡κ²Œ λ‚˜μ˜΄!!)


Integrals of primitive functions

<λ―Έμ λΆ„μ˜ 기본정리 Fundamental thm of Calculus>에 λ”°λ₯΄λ©΄,

\[\int^{b}_{a} f(x) dx = F(b) - F(a)\]

이닀.

이것을 λ³΅μ†Œ 적뢄에도 μ μš©ν•΄λ³΄μž.

\[\begin{aligned} \int_{C} f(z) dz &= \int^{b}_{a} f(z(t))) \cdot z'(t) dt \\ &= \int^{b}_{a} \frac{d}{dt} [F \circ z(t)] dt \\ &= F(z(b)) = F(z(a)) \end{aligned}\]

Definition.

Let $D$ be an open set in $\mathbb{C}$.

$f(z)$ is called a primitive function in $D$,
if it is continuous in $D$, and there is an analytic function $F(z)$ s.t.

\[F'(z) = f(z) \quad \textrm{in} \quad D\]


Theorem.

Let $f(z)$ be a primitive function in a domain $D$ with $F’(z) = f(z)$.

Let $C$ be a smooth curve in $D$ that begins at $z_1$ and ends at $z_2$.

Then

\[\int_{C} f(z) dz = F(z_2) - F(z_1)\]

즉, primitive function에 λŒ€ν•΄μ„  적뢄이 μ‹œμž‘κ³Ό 끝점에 μ˜ν•΄μ„œλ§Œ κ²°μ •λœλ‹€λŠ” 것!!

Corollary.

Let $C$ be a smooth closed curve in $D$.

Let $f$ be a primmitive function on $D$.

Then

\[\oint_{C} f(z) dz = 0\]



ML-inequality

ML-inequalityλŠ” μ λΆ„μ˜ μ ˆλŒ“κ°’μ˜ μƒν•œμ„ κ³„μ‚°ν•˜κ²Œ ν•˜λŠ” μ•„μ£Όμ•„μ£Όμ•„μ£Ό 쒋은 도ꡬ닀!!

Theorem.

Let $L$ be the length of $C$.

If $\left| f(z) \right| \le M$ for all $z \in C$,

then

\[\left| \int_{C} f(z) dz \right| \le ML\]

얼핏 보면, λ―Έμ λΆ„ν•™μ˜ 쀑간값 정리와 λΉ„μŠ·ν•˜λ‹€.

\[\left| \int^{b}_{a} f(x) dx \right| \le M(b-a)\]

$M = \textrm{sup} \left| f(x) \right| \quad x \in (a, b)$

proof.

\[\begin{aligned} \left| \int_{C} f(z) dz \right| &= \left| \int^{b}_{a} f(z(t)) \frac{dz}{dt} dt \right| \\ &\le \int^{b}_{a} \left| f(z(t)) \right| \left| \frac{dz}{dt} \right| dt \\ &\le M \cdot L \end{aligned}\]