complex primitive function & ML-inequality
2020-2νκΈ°, λνμμ βμμ©λ³΅μν¨μλ‘ β μμ μ λ£κ³ 곡λΆν λ°λ₯Ό μ 리ν κΈμ λλ€. μ§μ μ μΈμ λ νμμ λλ€ :)
Example.
If $C: \left| z \right| = 1$, then (μ€μ) = $2\pi i$.
μ΄κ±Έ νμ₯νλ©΄,
\[\int_{C} \frac{1}{(z-z_0)^m} dz, \quad (m=1, 2, ...)\]where $C: z(t) = z_0 + r e^{it}$ with $0 \le t \le 2\pi$.
If $m=1$, (μ€μ) = $2\pi i$
If $m \ne 1$, (μ€μ) = 0
(μ€μ λ‘ κ³μ°ν΄λ³΄λ©΄, μ λ κ² λμ΄!!)
Integrals of primitive functions
<λ―Έμ λΆμ κΈ°λ³Έμ 리 Fundamental thm of Calculus>μ λ°λ₯΄λ©΄,
\[\int^{b}_{a} f(x) dx = F(b) - F(a)\]μ΄λ€.
μ΄κ²μ 볡μ μ λΆμλ μ μ©ν΄λ³΄μ.
\[\begin{aligned} \int_{C} f(z) dz &= \int^{b}_{a} f(z(t))) \cdot z'(t) dt \\ &= \int^{b}_{a} \frac{d}{dt} [F \circ z(t)] dt \\ &= F(z(b)) = F(z(a)) \end{aligned}\]Definition.
Let $D$ be an open set in $\mathbb{C}$.
$f(z)$ is called a primitive function in $D$,
if it is continuous in $D$, and there is an analytic function $F(z)$ s.t.
Theorem.
Let $f(z)$ be a primitive function in a domain $D$ with $Fβ(z) = f(z)$.
Let $C$ be a smooth curve in $D$ that begins at $z_1$ and ends at $z_2$.
Then
\[\int_{C} f(z) dz = F(z_2) - F(z_1)\]μ¦, primitive functionμ λν΄μ μ λΆμ΄ μμκ³Ό λμ μ μν΄μλ§ κ²°μ λλ€λ κ²!!
Corollary.
Let $C$ be a smooth closed curve in $D$.
Let $f$ be a primmitive function on $D$.
Then
\[\oint_{C} f(z) dz = 0\]ML-inequality
ML-inequalityλ μ λΆμ μ λκ°μ μνμ κ³μ°νκ² νλ μμ£Όμμ£Όμμ£Ό μ’μ λꡬλ€!!
Theorem.
Let $L$ be the length of $C$.
If $\left| f(z) \right| \le M$ for all $z \in C$,
then
\[\left| \int_{C} f(z) dz \right| \le ML\]μΌν 보면, λ―Έμ λΆνμ μ€κ°κ° μ 리μ λΉμ·νλ€.
$M = \textrm{sup} \left| f(x) \right| \quad x \in (a, b)$
proof.