2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

3 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

Cauchy-Goursat Theorem

Theorem. The Cauchy-Goursat Theorem

If $f(z)$ is analytic in s imply connected domain $D$,

then for every simple closed contour $C$ in $D$,

\[\oint_{C} f(z) dz = 0\]

๋ณต์†Œํ•จ์ˆ˜๋ก ์—์„œ ์ •๋ง ์•„์ฃผ์•„์ฃผ์•„์ฃผ ์ค‘์š”ํ•˜๊ณ , ์œ ์šฉํ•œ ์ •๋ฆฌ์ด๋‹ค!! ๐Ÿ”ฅ


Definition. Connected domains


doubly connected domain์—์„œ๋Š” ์–ด๋–ค contour $C$์— ๋Œ€ํ•ด, $\textrm{Int}\; C \notin D$๊ฐ€ ๋œ๋‹ค.



Cauchyโ€™s proof

Theorem. Cauchyโ€™s Theorem

If $f(z)$ is analytic in a simply connected domain $D$, and $fโ€™(z)$ is continuous in $D$,

then for every simple closed contour $C$ in $D$

\[\oint_{C} f(z) dz = 0\]

Cauchy์˜ ์ •๋ฆฌ์—๋Š” โ€œ$fโ€™(z)$์ด continuousโ€๋ผ๋Š” ์กฐ๊ฑด์ด ๋ถ™๋Š”๋‹ค. Cauchy๋Š” ์ด๋ฅผ ์ด์šฉํ•ด ์ ๋ถ„์„ 2์ฐจ์›์˜ real integral๋กœ ๋ฐ”๊พธ์–ด ์ ‘๊ทผํ•œ๋‹ค.

Theorem. Greenโ€™s Theorem

๋งŒ์•ฝ $Q_x$, $P_y$๊ฐ€ ์—ฐ์† ํ•จ์ˆ˜๋ผ๋ฉด,

\[\oint_{C} (Pdx + Q dy) = \int \int_{R} (Q_x - P_y) \; dA = \int \int_{R} (Q_x - P_y) \; dx dy\]

Greenโ€™s Theorem์„ ์ด์šฉํ•ด Cauchyโ€™s Theorem์„ ์ฆ๋ช…ํ•ด๋ณด์ž.

proof.

\[\begin{aligned} f(z) &= f(x+iy) = u(x, y) + i v(x, y), \\ z(t) &= x(t) + i y(t), \quad a \le t \le b \end{aligned}\] \[\begin{aligned} \oint_{C} f(z) \; dz &= \int^{b}_{a} (u+iv)(x'+iy') \; dt \\ &= \int^{b}_{a} (ux'-vy') + i (uy' + vx') \; dt \end{aligned}\]

์œ„์˜ ์‹์—์„œ ์‹ค์ˆ˜ ๋ถ€๋ถ„๋งŒ ๋ถ„๋ฆฌํ•ด์„œ ์ƒ๊ฐํ•ด๋ณด์ž.

\[\int^{b}_{a} (ux'-vy') \; dt\]

์ด๋•Œ, $xโ€™ dt$๋ฅผ $dx$๋กœ ์ทจ๊ธ‰ํ•ด ์‹์„ ๋‹ค์‹œ ์“ฐ๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\int_{C} (u dx -v dy)\]

์ด๊ฒƒ์€ Greenโ€™s Thm์˜ $P dx + Q dy$์˜ ๊ผด์ด๋‹ค. ๋”ฐ๋ผ์„œ Greenโ€™s Thm์„ ์ ์šฉํ•˜๋ฉด,

\[\int_{C} (u dx -v dy) = \int \int_{R} (-v_x -u_y) \; dA\]

์ด๋•Œ, $f(z)$๊ฐ€ analytic ํ•จ์ˆ˜์ด๋ฏ€๋กœ, Cauchy-Riemann์— ์˜ํ•ด $u_y = -v_x$๋‹ค. ๋”ฐ๋ผ์„œ โ€œ(์ค€์ ๋ถ„) = 0โ€

๋™์ผํ•œ ๋ฐฉ์‹์œผ๋กœ ํ—ˆ์ˆ˜๋ถ€์— ๋Œ€ํ•ด์„œ๋„ โ€œ(์ค€์ ๋ถ„) = 0โ€์ด๋ผ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค.

๋”ฐ๋ผ์„œ

\[\oint_{C} f(z) \; dz = 0\]

$\blacksquare$

Goursatโ€™s proof

Cauchyโ€™s Thm์€ analytic function์˜ ์ ๋ถ„์— ๋Œ€ํ•ด ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ํ•˜์ง€๋งŒ, Cauchyโ€™s Thm์—์„œ ๊ฐ€์ •ํ•œ โ€œ$fโ€™(z)$ is continuousโ€๋ผ๋Š” ์กฐ๊ฑด์ด ์ถ”๊ฐ€๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์—, analytic function์˜ ์„ฑ์งˆ์„ ์„ค๋ช…ํ•˜๋Š” ๋ฐ์— ์ถฉ๋ถ„์น˜ ์•Š์•˜๋‹ค.

ร‰douard Goursat์€ Cauchyโ€™s Theorem์˜ continuous ์กฐ๊ฑด์„ ์ œ๊ฑฐํ•˜๊ณ  ์ฆ๋ช…์„ ์™„์„ฑํ•œ๋‹ค.

Theorem. Goursatโ€™s Theorem

Let $D$ be an open set in $\mathbb{C}$.

Let $T$ be triangle such that $T$ and its interior lie in $D$.

If $f(z)$ is analytic in $D$, then

\[\oint_{T} f(z) dz = 0\]

์ฆ๋ช…์ด ๋„ˆ๋ฌด ๊ธธ์–ด์„œ ํŒŒ์ผ๋กœ ๋Œ€์ฒดํ•ฉ๋‹ˆ๋‹ค!!

Goursat proof