2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

11 minute read

2020-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ โ€˜์‘์šฉ๋ณต์†Œํ•จ์ˆ˜๋ก โ€™ ์ˆ˜์—…์„ ๋“ฃ๊ณ  ๊ณต๋ถ€ํ•œ ๋ฐ”๋ฅผ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

Theorem. [Review] Goursat Theorem

Let $D$ be an open set in $\mathbb{C}$.

Let $T$ be a triangle such that $T$ and its interior lie in $D$.

If $f(z)$ is analytic in $D$, then

\[\oint_{T} f(z) dz = 0\]


Theorem. Cauchy-Goursat Theorem for a disc

Let $f(z)$ be analytic in a disc $D$.

Then there is an analytic function $F(z)$ in $D$ such that

\[F'(z) = f(z) \quad \textrm{for} \; z \in D\]

Corollary.

Let $f(z)$ be analytic in a disc $D$.

Then for any closed contour $C$ in $D$,

\[\oint_{C} f(z) \; dz = 0\]

์ฆ๋ช…์€ ์ƒ๊ฐ๋ณด๋‹ค ๊ฐ„๋‹จํ•˜๋‹ค.

๋…ผ์˜์˜ ํŽธ์˜๋ฅผ ์œ„ํ•ด Disc $D$์˜ ์ค‘์‹ฌ์ด ์›์ ์ด๋ผ๊ณ  ํ•˜์ž.

๊ทธ๋ฆฌ๊ณ  $F(z)$๋ฅผ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ํ•˜์ž.

\[F(z_0) = \int_{C} f(z) \; dz\]

์ด์ œ,

\[\lim_{h \rightarrow 0} \frac{F(z_0 + h) - F(z_0)}{h} = f(z_0)\]

์ž„์„ ๋ณด์ด์ž!

\[\begin{aligned} F(z_0 + h) - F(z_0) &= \int_{C_2} f(z) \; dz - \int_{C_1} f(z) \; dz \\ &= \int_{C_3} f(z) \; dz \end{aligned}\]

Then,

์ด๋•Œ, $f(z_0)$์— ๋Œ€ํ•ด ์•„๋ž˜์˜ ๋“ฑ์‹์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

\[\begin{aligned} \frac{1}{h} \int_{C_3} f(z_0) \; dz &= f(z_0) \frac{1}{h} \int_{C_3} \; dz \\ &= f(z_0) \frac{1}{h} h \\ &= f(z_0) \end{aligned}\] \[\begin{aligned} &\frac{1}{h} \left( F(z_0 + h) - F(z_0) \right) - f(z_0) \\ &= \frac{1}{h} \int_{C_3} f(z) \; dz - \frac{1}{h} \int_{C_3} f(z_0) \; dz \\ &= \frac{1}{h} \int_{C_3} \left( f(z) - f(z_0) \right) \; dz \end{aligned}\]

์ด์ œ ์œ„์˜ ์‹์—์„œ โ€œML-inequalityโ€œ๋ฅผ ์ ์šฉํ•ด๋ณด์ž!!

\[\begin{aligned} \left| \frac{1}{h} \int_{C_3} \left( f(z) - f(z_0) \right) \; dz \right| &= \frac{1}{\left| h \right|} \max_{z \in C_3} \left| f(z) - f(z_0) \right| \cdot \left| h \right| \\ &= \max_{z \in C_3} \left| f(z) - f(z_0) \right| \end{aligned}\]

์ด๋•Œ, $z \rightarrow z_0$ ํ• ์ˆ˜๋ก $(z - z_0) \rightarrow 0$ ์ด๋ฏ€๋กœ ์šฐ๋ณ€์€ 0์ด ๋œ๋‹ค.

์ฆ‰,

\[\lim_{h \rightarrow 0} \frac{F(z_0 + h) - F(z_0)}{h} = f(z_0)\]

์ด๋‹ค!!

๊ฒฐ๋ก ์€ $F(z_0) = \int_{C} f(z) \; dz$๋กœ ๋‘ ์œผ๋กœ์จ $Fโ€™(z) = f(z)$๊ฐ€ ๋˜๋Š” ํ•จ์ˆ˜ $F(z)$๋ฅผ ์ฐพ์•˜๋‹ค!!


Generalization. Principles of Deformation of Contours

์•ž์—์„œ๋Š” disc $D$์— ๋Œ€ํ•ด Cauchy Theorem์„ ์ ์šฉํ–ˆ๋‹ค๋ฉด, ์ด๋ฒˆ์—๋Š” ์ผ๋ฐ˜์ ์ธ ํ˜•ํƒœ์˜ ์˜์—ญ $D$์—์„œ Cauchy Theorem์„ ์ ์šฉํ•œ๋‹ค.

์ผ๋ฐ˜์ ์ธ simply connected domain $D$ ์œ„์—์„œ ํ์ ๋ถ„ closed integral์ด 0์ด ๋จ์„ ๋ณด์ด๊ธฐ ์œ„ํ•ด ์•„๋ž˜์˜ ์‹์„ ์ฆ๋ช…ํ•ด์•ผ ํ•œ๋‹ค.

\[\int_{C_1} f(z) \; dz = \int_{C_2} f(z) \; dz\]

curve $C_1$, $C_2$๋ฅผ ๊ฐ€๋กœ์ง€๋ฅด๋Š” 3๊ฐœ์˜ disc๋ฅผ ์ƒ๊ฐํ•ด๋ณด์ž.

์ด๋ฏธ ์•ž์—์„œ disc ๋‚ด์˜ analytic function์˜ closed integral์˜ ๊ฐ’์€ 0์ž„์„ ํ™•์ธํ–ˆ์œผ๋ฏ€๋กœ, 3๊ฐœ์˜ disc๋กœ ์ ๋‹นํžˆ ๋‚˜๋ˆ„์–ด curve $C_1$, $C_2$๋ฅผ disc ๋‚ด๋ถ€์˜ closed curve 3๊ฐœ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋‹ค.

์ด์ œ disc ์œ„์—์„œ three closed integral์„ ์ž˜ ์ •๋ฆฌํ•˜๋ฉด,

\[\int_{C_1} f(z) \; dz = \int_{C_2} f(z) \; dz\]

์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.


Theorem.

Let $f(z)$ be analytic in a simply connected domain $D$,

then there is an analytic function $F(z)$ in $D$ s.t.

\[F'(z) = f(z) \quad \textrm{for} \; z \in D\]

where $F(z)$ id defined as

\[F(z) = \int_{C} f(w) \; dw\]



Multiply Connected Domains

์ง€๊ธˆ๊นŒ์ง€๋Š” Domain์— hole์ด ์—†๋Š” โ€œsimply connected domainโ€ ์œ„์—์„œ analytic function์„ ์‚ดํŽด๋ณด์•˜๋‹ค.

์ง€๊ธˆ๋ถ€ํ„ฐ๋Š” ์‹œ์•ผ๋ฅผ ํ™•์žฅํ•ด์„œ Domain์— โ€œholeโ€์ด ์žˆ๋Š” ๊ฒฝ์šฐ๋ฅผ ์‚ดํŽด๋ณด์ž.

๋จผ์ € Domain์— hole์ด ํ•˜๋‚˜ ์กด์žฌํ•œ๋‹ค๋ฉด, โ€œdoubly connected domainโ€œ์ด๋ผ๊ณ  ํ•œ๋‹ค. ๋งŒ์•ฝ Domain์— hole์ด $(p-1)$๊ฐœ ๋งŒํผ ์กด์žฌํ•œ๋‹ค๋ฉด, โ€œ$p$-fold connected domainโ€œ์ด๋ผ๊ณ  ํ•œ๋‹ค.

Example. integral of analytic function on doubly connected domain

doubly connected domain $D$ ์œ„์—์„œ analytic function $f(z)$๋ฅผ ์ ๋ถ„ํ•ด๋ณด์ž.

์ด์ œ๊นŒ์ง€ ์šฐ๋ฆฌ๋Š” simply connected domain ์œ„์—์„œ์˜ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ง€๊ธˆ์€ โ€œdoubly connected domainโ€ ์œ„์—์„œ ์ ๋ถ„ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์•ž์—์„œ ์–ป์€ โ€œclosed integral = 0โ€์ด๋ผ๋Š” ๊ฒฐ๊ณผ๋ฅผ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์—†๋‹ค!!

๊ทธ๋ž˜์„œ ์•ฝ๊ฐ„์˜ ๊ผผ์ˆ˜๋ฅผ ์“ฐ๋ ค๊ณ  ํ•œ๋‹ค.

doubly connected domain ์œ„์—์„œ์˜ curve $C_1$, $C_2$์—์„œ์˜ ์ ๋ถ„์„ ์ƒ๊ฐํ•ด๋ณด์ž. ์ด๋•Œ, ๋‘ curve์˜ ์‚ฌ์ด๋ฅผ ์ ์ ˆํžˆ ๋ถ„๋ฆฌํ•˜์—ฌ ์œ„์™€ ๊ฐ™์ด ๋‘ ๊ฐœ์˜ curve $A_1$, $A_2$๋กœ ๋ณ€ํ˜•ํ•  ์ˆ˜ ์žˆ๋‹ค!

๋†€๋ž๊ฒŒ๋„ $A_1$๊ณผ $A_2$๋Š” simply connected domain ์œ„์— ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•ž์—์„œ ์“ด Cauchy Theorem์„ ์ ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค!!

๋”ฐ๋ผ์„œ

\[\oint_{A_1} f(z) \; dz = \oint_{A_2} f(z) \; dz = 0\]

์ด ๋˜๊ณ , ์ด์— ๋”ฐ๋ผ

\[\oint_{C_1} f(z) \; dz - \oint_{C_2} f(z) \; dz = 0\]

์ด ๋˜์–ด ๊ฒฐ๊ตญ

\[\oint_{C_1} f(z) \; dz = \oint_{C_2} f(z) \; dz\]

์ด ๋œ๋‹ค.

์ฆ‰, doubly connected domain์—์„œ์˜ ์ ๋ถ„์€ โ€œcurve์™€ ์ƒ๊ด€์—†์ดโ€ ๋ชจ๋‘ ๋™์ผํ•œ ์ ๋ถ„๊ฐ’์„ ์–ป๋Š”๋‹ค!!


๋งˆ์ฐฌ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์œผ๋กœ โ€œtriply connected domainโ€์—์„œ๋Š” ์–ด๋–ป๊ฒŒ ๋˜๋Š”์ง€ ์‚ดํŽด๋ณด์ž.

๋งŒ์•ฝ ์œ„ ๊ทธ๋ฆผ์˜ curve $C_1$๊ณผ ๊ฐ™์ด curve ๋‚ด๋ถ€์— hole์ด ๋‘ ๊ฐœ๊ฐ€ ์กด์žฌํ•˜๋Š” ๊ฒฝ์šฐ๋Š” ๊ฐ hole์—์„œ ๊ฐ๊ฐ ์ ๋ถ„ํ•œ ๊ฒฐ๊ณผ์˜ ํ•ฉ๊ณผ ๋™์ผํ•˜๋‹ค.


์œ„์™€ ๊ฐ™์€ ์‚ฌ์‹ค๋“ค์˜ ํฐ ์žฅ์ ์€ analytic function์—์„œ๋Š” ์ ๋ถ„ curve์˜ ํ˜•ํƒœ๋ฅผ ํŽธ์˜์— ๋”ฐ๋ผ ์ ๋‹นํžˆ โ€œdeformationโ€ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค!!

์˜ˆ๋ฅผ ๋“ค์–ด,

\[\oint_{C} \frac{1}{z}\;dz\]

โ€œwhere $C$ is a rectangle with four vertices $\pm1 \; \pm i$, CCWโ€๋ผ๋ฉด, ์šฐ๋ฆฌ๋Š” rectangle curve๋ฅผ ์ ๋‹นํ•œ disc curve๋กœ ๋ฐ”๊พธ์–ด ์•„์ฃผ์•„์ฃผ ์‰ฝ๊ฒŒ ์ ๋ถ„์„ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค!!


Cauchyโ€™s Integral Formula

Theorem.

Let $D$ be a simply connected domain.

Let $f(z)$ be analytic in $D$, and $z_0 \in D$.

Let $C$ be any simple closed contour in $D$ that ecloses $z_0$, CCW.

Then,

\[\oint_{C} \frac{f(z)}{z-z_0} \; dz = 2\pi i f(z_0)\]

๋‹ค๋ฅด๊ฒŒ ์“ฐ๋ฉด,

\[f(z_0) = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z-z_0}\;dz\]

๋‘๋ฒˆ์งธ ์‹์€ ์ •๋ง ๋†€๋ผ์šด๊ฒŒ, $f(z_0)$๋ฅผ contour integral๋กœ ํ‘œํ˜„ํ–ˆ๋‹ค๋Š” ์ ์ด๋‹ค!!!

์—ฌ๊ธฐ์—์„œ ์ข€๋” ๋ณ€ํ˜•ํ•˜๋ฉด, $f(z)$๋ฅผ contour integral๋กœ ํ‘œํ˜„ํ•  ์ˆ˜๋„ ์žˆ๋‹ค.

\[f(z) = \frac{1}{2\pi i} \oint_{C} \frac{f(w)}{w-z}\;dw\]

proof.

์›๋ž˜์˜ contour $C$ ๋‚ด๋ถ€์— โ€œ$z_0$๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•˜๊ณ  ๋ฐ˜์ง€๋ฆ„์ธ $\rho$๊ฐ€ ์ถฉ๋ถ„ํžˆ ์ž‘์•„์„œ $C$ ๋‚ด๋ถ€์— ์™„์ „ํžˆ ๋“ค์–ด๊ฐ€๋Š”โ€ disc $C_{\rho}$๋ฅผ ์žก์ž.

์ฒซ๋ฒˆ์งธ๋กœ, ๋‚ด๋ถ€์— hole์ด ์žˆ๋Š” analytic function์˜ ์ ๋ถ„์— ์˜ํ•ด ์•„๋ž˜์˜ ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[\oint_{C} \frac{f(z)}{z-z_0}\;dz = \oint_{C_{\rho}} \frac{f(z)}{z-z_0}\;dz\]


๋ณธ๊ฒฉ์ ์œผ๋กœ ์ฆ๋ช…ํ•˜๊ธฐ ์ „์—, โ€œ์ง๊ด€โ€์ ์œผ๋กœ, ๋œ ์—„๋ฐ€ํ•˜๊ฒŒ ์ฆ๋ช…์„ ์Šค์ผ€์น˜ ํ•ด๋ณด์ž.

๋งŒ์•ฝ $\rho$๊ฐ€ ์ถฉ๋ถ„ํžˆ ์ž‘๋‹ค๋ฉด, $f(z) \sim f(z_0)$๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค.

์ด๊ฒƒ์„ ์ฒซ๋ฒˆ์งธ ์‹์— ๋ฐ˜์˜ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\begin{aligned} \oint_{C} \frac{f(z)}{z-z_0}\;dz &= \oint_{C_{\rho}} \frac{f(z_0)}{z-z_0}\;dz \\ &= f(z_0) \oint_{C_{\rho}} \frac{1}{z-z_0}\;dz \end{aligned}\]

์ด๋•Œ, ์šฐ๋ฆฌ๋Š” $\oint_{C_{\rho}} \frac{1}{z-z_0}\;dz$์— ๋Œ€ํ•œ ์ ๋ถ„์˜ ๊ฐ’์€ $2\pi i$๋ผ๋Š” ๊ฒƒ์„ ์‰ฝ๊ฒŒ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

\[\oint_{C_{\rho}} \frac{1}{z-z_0}\;dz = 2\pi i\]

๋”ฐ๋ผ์„œ,

\[\oint_{C} \frac{f(z)}{z-z_0}\;dz = 2\pi i f(z_0)\]

๊ฐ€ ๋˜์–ด, Theorem์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค!


ํ•˜์ง€๋งŒ, ์ด ์ฆ๋ช…์€ โ€œ๋งŒ์•ฝ $\rho$๊ฐ€ ์ถฉ๋ถ„ํžˆ ์ž‘๋‹ค๋ฉด, $f(z) \sim f(z_0)$๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค.โ€๋ผ๋Š” ๋ถ€๋ถ„์ด ๋ช…ํ™•ํžˆ ์ฆ๋ช…๋˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์— ์—„๋ฐ€ํ•œ ์ฆ๋ช…์€ ์•„๋‹ˆ๋‹ค.

๊ทธ๋ž˜์„œ ์ข€๋” ์—„๋ฐ€ํ•˜๊ณ , <๊ทนํ•œlimit>์„ ์‚ฌ์šฉํ•ด ์ฆ๋ช…ํ•ด๋ณด์ž.

์šฐ๋ฆฌ๊ฐ€ ์ฆ๋ช…ํ•˜๊ณ ์ž ํ•˜๋Š” ์‹์€

\[\oint_{C} \frac{f(z)}{z-z_0}\;dz = 2\pi i f(z_0)\]

์ด๋‹ค.

์ด๊ฒƒ์„ ์•„๋ž˜์™€ ๊ฐ™์ด ์ ์–ด๋ณด์ž.

\[\left| \oint_{C} \frac{f(z)}{z-z_0}\;dz - 2\pi i f(z_0) \right|\]

์‹ $\oint_{C_{\rho}} \frac{1}{z-z_0}\;dz = 2\pi i$๋ฅผ ์ด์šฉํ•ด ์œ„์˜ ์‹์„ ์•„๋ž˜์™€ ๊ฐ™์ด ๋ณ€ํ˜•ํ•˜์ž.

\[\begin{aligned} \left| \oint_{C} \frac{f(z)}{z-z_0}\;dz - 2\pi i f(z_0) \right| &= \left| \oint_{C} \frac{f(z)}{z-z_0}\;dz - f(z_0) \oint_{C_{\rho}} \frac{1}{z-z_0}\;dz \right| \\ &= \left| \oint_{C} \frac{f(z)}{z-z_0}\;dz - \oint_{C_{\rho}} \frac{f(z_0)}{z-z_0}\;dz \right| \\ &= \left| \oint_{C_{\rho}} \frac{f(z)}{z-z_0}\;dz - \oint_{C_{\rho}} \frac{f(z_0)}{z-z_0}\;dz \right| \\ &= \left| \oint_{C_{\rho}} \frac{f(z) - f(z_0)}{z-z_0}\;dz \right| \end{aligned}\]

์ด์ œ! ์—ฌ๊ธฐ์„œ ML-ineqeuality๋ฅผ ์ ์šฉํ•œ๋‹ค!

\[\begin{aligned} \left| \oint_{C_{\rho}} \frac{f(z) - f(z_0)}{z-z_0}\;dz \right| &\le \left( \max_{z \in C_{\rho}} \; \left| f(z) - f(z_0) \right| \cdot \frac{1}{\rho}\right) \left(2\pi\rho \right) \\ &= \max_{z \in C_{\rho}} \; \left| f(z) - f(z_0) \right| \cdot 2\pi \end{aligned}\]

$\rho$๊ฐ€ 0์— ๊ฐ€๊นŒ์›Œ ์งˆ์ˆ˜๋ก, $C_{\rho}: z = z_0 + \rho e^{it}$์—์„œ $z \rightarrow z_0$๊ฐ€ ๋œ๋‹ค.

๋”ฐ๋ผ์„œ $\left|f(z) - f(z_0)\right| \rightarrow 0$์ด ๋œ๋‹ค!!

์ฆ‰,

\[\oint_{C} \frac{f(z)}{z-z_0}\;dz = 2\pi i f(z_0)\]

๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค!! $\blacksquare$


์ ๋ถ„ curve $C$ ๋‚ด๋ถ€์— hole์ด ์กด์žฌํ•˜๋Š”์ง€ ์—ฌ๋ถ€์— ๋”ฐ๋ผ์„œ complex contour integral์€ ๊ทธ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ฌ๋ผ์ง„๋‹ค.

1. curve $C$ ๋‚ด๋ถ€์— hole์ด ์กด์žฌํ•˜์ง€ ์•Š์Œ.
(= $f(z)$ is analytic inside $C$)

\[\oint_{C} f(z)\;dz = 0\]

2. curve $C$ ๋‚ด๋ถ€์— hole์ด ์กด์žฌํ•จ.

Cauchyโ€™s Integral Formula๋ฅผ ์ ์šฉํ•œ๋‹ค.

\[\oint_{C} f(z) \; dz = \int_{C} \frac{g(z)}{(z-z_0)^n}\;dz\]