Extended Cauchyโs Integral Formula
2020-2ํ๊ธฐ, ๋ํ์์ โ์์ฉ๋ณต์ํจ์๋ก โ ์์ ์ ๋ฃ๊ณ ๊ณต๋ถํ ๋ฐ๋ฅผ ์ ๋ฆฌํ ๊ธ์ ๋๋ค. ์ง์ ์ ์ธ์ ๋ ํ์์ ๋๋ค :)
Theorem. [Review] Cauchyโs Integral Formula
Let $D$ be a simply connected domain, and $f$ be an analytic function in $D$.
Let $z_0 \in D$, and $C$ be any simple closed contour in $D$ that encloses $z_0$.
Then
\[\oint \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0) \iff f(z_0) = \frac{1}{2\pi i} \oint \frac{f(z)}{z-z_0} dz\]Extension of Cauchyโs Integral Formula
Theorem.
Let $f(z)$ be analytic in $D$.
Then it has derivatives of all orders in $D$, which are then also analytic in $D$.
The derivatives are given by
\[f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_0)^{n+1}} dz\]where $C$ is any simple closed CCW contour in $D$ encloseing $z_0$ such that its interior also lies in $D$.
Motivation.
analytic function $f(z)$๊ฐ ์๋์ ๊ฐ์ด ์ฃผ์ด์ ธ ์๋ค๊ณ ํ์.
\[f(z) = \frac{1}{2\pi i} \oint \frac{f(w)}{w-z} dz\]์ด๋, $f(z)$๋ฅผ ๋ฏธ๋ถํ $\dfrac{d}{dz}f(z)$๋ฅผ ๊ตฌํ ๋, ์๋์ ๊ฐ์ด ์ ๋ถ ๋ด๋ถ์ ๋ฏธ๋ถ ์ฐ์ฐ์ $\dfrac{d}{dz}$๋ฅผ ๋ผ์๋ฃ์ ์ ์์๊น??
\[\frac{d}{dz} f(z) \overset{?}{=} \frac{1}{2\pi i} \oint \frac{d}{dz} \frac{f(w)}{w-z} dw\]์ผ๋ฐ์ ์ผ๋ก ์ ๋ถ ์ฐ์ฐ์์ ๋ฏธ๋ถ ์ฐ์ฐ์์ ๊ตํ์ ๋ถ๊ฐ๋ฅํ๋ค! ํ์ง๋ง, ๋ง์ฝ ์ด๊ฒ์ด ๊ฐ๋ฅํ๋ค๋ฉด, ์ฐ๋ฆฌ๋ ์๋์ ๊ฐ์ ๊ฒฐ๊ณผ๋ฅผ ์ป๋๋ค.
\[\begin{aligned} \frac{d}{dz} f(z) &\overset{?}{=} \frac{1}{2\pi i} \oint \frac{d}{dz} \frac{f(w)}{w-z} dw \\ &= \frac{1}{2\pi i} \oint \frac{f(w)}{(w-z)^2} dw \end{aligned}\]๋ง์ฝ $n$๋ฒ ๋ฏธ๋ถ ํ๋ค๋ฉด,
\[\left(\frac{d}{dz}\right)^n \frac{1}{w-z} = n! \frac{1}{(w-z)^{n+1}}\]์ด๊ธฐ ๋๋ฌธ์ ์๋์ ๊ฐ์ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ๊ฒ์ด๋ค.
\[\begin{aligned} f^{(n)}(z) &\overset{?}{=} \frac{1}{2\pi i} \oint \left(\frac{d}{dz}\right)^n \frac{f(w)}{w-z} dw \\ &= \frac{1}{2\pi i} \oint n! \frac{f(w)}{(w-z)^{n+1}} dw \\ &= \frac{n!}{2\pi i} \oint \frac{f(w)}{(w-z)^{n+1}} dw \end{aligned}\]๋ค์ ํ๋ฒ ๋งํ์ง๋ง, ์ผ๋ฐ์ ์ผ๋ก ์ ๋ถ ์ฐ์ฐ์์ ๋ฏธ๋ถ ์ฐ์ฐ์๋ ๊ตํ๋์ง ์๊ธฐ ๋๋ฌธ์ ์์ ๊ฐ์ด ์ฆ๋ช ํ๋ฉด ์ ๋๋ค! ์๋์ ๊ทนํ์ ๊ฐ๋ ์ ์ด์ฉํด ์ด๊ฒ์ ์ ๋๋ก ์ฆ๋ช ํ๋ค.
Proof.
<Extended Cauchy Integral>๋ฅผ ์ฆ๋ช ํ๊ธฐ ์ํด $f(z)$๋ฅผ ํ๋ฒ ๋ฏธ๋ถํ ๊ฒฐ๊ณผ๊ฐ ์๋๊ฐ ๋จ์ ๋ณด์ด์. ๋๋ฒ, ์ธ๋ฒ ๋ฏธ๋ถ์ ๋ํ ๊ฒฐ๊ณผ๋ $fโ(z)$๋ฅผ ์ฆ๋ช ํ ๋ฐฉ์์ ๊ทธ๋๋ก ์ฌ์ฉํ๋ฉด ๋๋ค.
Let assume $C$ a circle with radius $r$.
\[\begin{equation} f'(z_0) = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_0)^2} dz \end{equation}\]๋จผ์ ์ ์์ ๋ฐ๋ผ $fโ(z_0)$๋ ์๋์ ๊ฐ๋ค.
\[f'(z) = \lim_{h \rightarrow 0} \frac{f(z_0 + h) - f(z_0)}{h}\]์ด๋, ์ (1)์์ ์ฐ๋ณ์ด ์ ๋ถ์ด๋ ์ข๋ณ์ธ $fโ(z)$๋ ์ ๋ถ์ ํํ๋ก ๋ฐ๊ฟ์ฃผ์. ์ด ๊ณผ์ ์์ <Cauchy Integral>์ ์ฌ์ฉํ๋ค.
\[\begin{equation} f'(z) = \frac{1}{h} \left( \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z-(z_0 + h)} dz - \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z-z_0} dz \right) \end{equation}\](์ด๋, $h$๋ ์ถฉ๋ถํ ์์์ $\left| h \right| < r/2$์ด๋ค.)
์ (2)์ ์ ๋ถ์์ ์กฐ๊ธ ๋ค๋ฌ์ด๋ณด์.
\[\begin{equation} \begin{aligned} (2) &= \frac{1}{h} \frac{1}{2\pi i} \oint_C f(z) \left(\frac{1}{z-(z_0+h)} - \frac{1}{z-z_0} \right) dz \\ &= \frac{1}{h} \frac{1}{2\pi i} \oint_C f(z) \left( \frac{(z-z_0) - (z-(z_0+h)))}{\left(z-(z_0+h)\right)(z-z_0)} \right) dz \\ &= \frac{1}{\cancel{h}} \frac{1}{2\pi i} \oint_C f(z) \frac{\cancel{h}}{\left(z-(z_0+h)\right)(z-z_0)} dz \\ &= \frac{1}{2\pi i} \oint_C \frac{f(z)}{\left(z-(z_0+h)\right)(z-z_0)} dz \end{aligned} \end{equation}\]์ด์ ์ (3)์ ์ (1)์ ์ ์ฉํ๊ณ , ๊ทนํ์ ์ทจํ๊ธฐ ํธํ ๊ผด๋ก ๋ฐ๊ฟ์ฃผ์.
\[\begin{equation} \begin{aligned} &f'(z_0) - \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_0)^2} dz \\ &= \frac{1}{2\pi i} \oint_C \frac{f(z)}{\left(z-(z_0+h)\right)(z-z_0)} dz - \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_0)^2} dz \\ &= \frac{1}{2\pi i} \oint_C f(z) \left( \frac{1}{\left(z-(z_0+h)\right)(z-z_0)} - \frac{1}{(z-z_0)^2} \right) dz \\ &= \frac{1}{2\pi i} \oint_C f(z) \left( \frac{(z-z_0)^2 - ((z-z_0) - h)(z-z_0)}{\left(z-(z_0+h)\right)(z-z_0)(z-z_0)^2} \right) dz \\ &= \frac{1}{2\pi i} \oint_C f(z) \left( \frac{h\cancel{(z-z_0)}}{\left(z-(z_0+h)\right)\cancel{(z-z_0)}(z-z_0)^2} \right) dz \\ &= \frac{1}{2\pi i} \oint_C \frac{f(z) \cdot h}{\left(z-(z_0+h)\right)(z-z_0)^2} dz \end{aligned} \end{equation}\]์ด์ ์ (4)๊ฐ 0์ผ๋ก ์๋ ดํจ์ ๋ณด์ด๋ฉด <Extended Cauchy Integral>์ ์ฆ๋ช ํ๊ฒ ๋๋ค! ์ด๊ฒ์ <ML-Inequality>๋ฅผ ์ฌ์ฉํ๋ฉด ๋๋ค.
์ด๋, $\left| z-(z_0+h) \right| \ge r/2$์ด๊ณ , $\left| f(z) \right| \le M$ for some $M$ ์ด๋ฏ๋ก,
\[\begin{equation} \left| \frac{1}{2\pi i} \oint_C \frac{f(z) \cdot h}{\left(z-(z_0+h)\right)(z-z_0)^2} dz \right| \le \left( \frac{1}{2\pi} \frac{M \cdot h}{(r/2) \; r^2}\right) \cdot \left( 2\pi r \right) = 2 \; \frac{M \cdot h}{r^2} \end{equation}\]$h \rightarrow 0$์ผ ๋, ์ (5)๊ฐ 0์ผ๋ก ์๋ ดํ๋ฏ๋ก ์ (1)์ด ์ฑ๋ฆฝํ๋ค! $\blacksquare$
Application of Cauchy Integral
Cauchyโs Inequality
Theorem.
Let $f(z)$ be an analytic inside and on a positively oriented circle $C$ or radius $r$ and center $z_0$.
If $\left| f(z) \right| \le M$ on $C$, then
\[\left| f^{(n)}(z_0) \right| \le \frac{n!M}{R^n}\]
Proof.
์ฆ๋ช ์ ๊ฐ๋จํ๋ค. <Extended Cauchy Integral>์ ๋ฐ๋ก <ML-Inequality>๋ฅผ ์ทจํด์ฃผ๋ฉด ๋๋ค.
\[\left| f^{(n)}(z_0) \right| = \left| \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^n} dz \right| \le \left( \frac{n!}{2\pi} \frac{M}{R^{n+1}} \right) \left( 2\pi R \right) = \frac{n!M}{R^n}\]$\blacksquare$
Liouvilleโs Theorem
Theorem.
If a function $f(z)$ is entire and bounded, then $f(z)$ is constant.
<๋ฆฌ์ฐ๋น์ ์ ๋ฆฌ>๋ ๋์ฐ๋ ํจ๊ป ์ดํด๋ณด๋ฉด ์ข๋ค.
(๋์ฐ) If $f(z)$ is not constant, then $f(z)$ is not bounded (=explode to $+\infty$ or $-\infty$).
Proof.
Supp. $f(z)$ is bounded, then $\left| f(z) \right| \le M$ for all $z$.
Consider a circle $C_R$ with radius $R$. Then, due to
\[\left| f'(z_0) \right| \le \frac{M}{R}\]$\left| fโ(z_0) \right| \le 0$ as $R \rightarrow \infty$
Therefore, $fโ(z_0) = 0$ for all $z_0 \in \mathbb{C}$.
This means $f(z)$ is constant. $\blacksquare$
Fundamental Theorem of Algebra
Theorem.
Any polynomial
\[P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0, \quad (a_n \ne 0)\]of degree $n$ ($n \ge 1$) has a solution.
Proof.
(๊ท๋ฅ๋ฒ) Supp. that $P(z)$ has no solution.
Then $\dfrac{1}{P(z)}$ is entire, because thereโs no $z_0$ s.t. $p(z_0) = 0$
It is also bounded in the complex plane!
\[\begin{aligned} \left| P(z) \right| &= \left| a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0 \right| \\ & \ge \left| a_n z^n \right| - \left| a_{n-1} z^{n-1} + \cdots + a_1 z + a_0 \right| \end{aligned}\]์ด๋, $\left| a_{n-1} z^{n-1} + \cdots + a_1 z + a_0 \right|$์ ์ผ๊ฐ ๋ถ๋ฑ์์ ์ ์ฉํ๋ฉด ์๋์ ๊ฐ๋ค.
\[\left| a_{n-1} z^{n-1} + \cdots + a_1 z + a_0 \right| \le \left| a_{n-1} \right| \left|z \right|^{n-1} + \cdots + \left| a_1 \right| \left| z \right| + \left| a_0 \right|\]์ด๊ฒ์ ์ ์ฉํ๋ฉด,
\[\begin{aligned} \left| P(z) \right| &\ge \left| a_n z^n \right| - \left| a_{n-1} z^{n-1} + \cdots + a_1 z + a_0 \right| \\ & \ge \left| a_n \right| \left| z \right|^n - \left| a_{n-1} \right| \left|z \right|^{n-1} - \cdots - \left| a_1 \right| \left| z \right| - \left| a_0 \right| \end{aligned}\]์ด๋, ๋งจ์์ ์๋ $\left| a_n \right| \left| z \right|^n$์ power์ ์ํด ์ด๋ค ์์ $R$๊ฐ ์กด์ฌํด $\left| z \right| \ge R$์์ $\left| P(z) \right| \ge 1$๊ฐ ์ฑ๋ฆฝํ๋ค.
๊ทธ๋ฆฌ๊ณ ์ด๊ฒ์ $\left| \dfrac{1}{P(z)} \right|$์ bounded ์ํจ๋ค.
\[\left| P(z) \right| \ge 1 \iff \left| \frac{1}{P(z)} \right| \le 1\]๋ฐ๋๋ก $\left| z \right| < R$์์ $\dfrac{1}{P(z)}$๊ฐ continuousํ๊ณ , $P(z) = 0$์ด ๋๋ ์ง์ ์ด ์กด์ฌํ์ง ์๊ธฐ ๋๋ฌธ์ $\left| \dfrac{1}{P(z)} \right|$๋ bounded ๋์ด ์๋ค!
๋ฐ๋ผ์, $\dfrac{1}{P(z)}$๋ bounded ๋ entire function์ด๋ค. ๊ทธ๋ ๋ค๋ฉด, ์์์๋ณด์ธ <๋ฆฌ์ฐ๋น์ ์ ๋ฆฌ>์ ์ํด $\dfrac{1}{P(z)}$๋ constant function์ด ๋๋ค. ํ์ง๋ง, $n \ge 0$์ด๋ฏ๋ก $\dfrac{1}{P(z)}$๋ ๋ช ๋ฐฑํ constant function์ด ์๋๋ค!!
๋ฐ๋ผ์, โ$P(z)$ has no solution.โ๋ผ๋ ์ฒ์์ ๊ฐ์ ์ ๊ฑฐ์ง์ด๋ค. $P(z)$๋ ์ ์ด๋ ํ๋์ solution์ ๊ฐ์ง๋ค!
๋ง์ฝ $P(z)$๊ฐ ์ ์ด๋ ํ๋์ solution์ ๊ฐ์ง๋ค๋ฉด, $P(z)$๋ฅผ ์๋์ ๊ฐ์ด ๊ธฐ์ ํ ์ ์๋ค.
\[P(z) = (z-z_1) Q_1(z)\]์ด๋, $Q_1(z)$๋ $n-1$ ์ฐจ์๋ฅผ ๊ฐ์ง๋ polynomial์ด๋ค. $Q_1(z)$์ ๋ํด ์์ ๋ ผ์๋ฅผ ๋ค์ ์ ์ฉํ๋ฉด, $Q_1(z)$์ด ์ ์ด๋ ํ๋์ solution์ ๊ฐ์ง์ ์ ์ ์๋ค. ๋ฐ๋ผ์
\[P(z) = (z-z_1)(z-z_2) Q_2(z)\]์ด๊ฒ์ ๋ฐ๋ณตํ๋ฉด, $P(z)$๊ฐ $n$๊ฐ solution์ ๊ฐ์ง์ ํ์ธํ ์ ์๋ค!! $\blacksquare$
Moreraโs Theorem
Theorem.
Let $f(z)$ be a continuous function in a domain $D$.
If
\[\oint_C f(z) dz = 0\]for any closed contour in $D$, then $f(z)$ is analytic in $D$.
<๋ชจ๋ ๋ผ์ ์ ๋ฆฌ>๋ <Cauchy-Goursat Theorem>์ ์ญ์ ๊ธฐ์ ํ ์ ๋ฆฌ๋ค.
Proof.
๋ฐ๋ผ์, $f(z)$์ ๋ํ Anti-Derivative Function $F(z)$๊ฐ ์กด์ฌํด ์๋๊ฐ ์ฑ๋ฆฝํ๋ค.
\[F'(z) = f(z)\]์ด๋, $F(z)$์ derivative์ธ $f(z)$๊ฐ continuous ํ๋ฏ๋ก $F(z)$๋ analytic function์ด๋ค. Anti-Derivative $F(z)$๊ฐ analytic์ด๋ฏ๋ก derivative์ธ $f(z)$ ์ญ์ analytic์ด๋ค! $\blacksquare$