2019-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ ๋“ค์€ โ€˜๋ฏธ๋ถ„๋ฐฉ์ •์‹โ€™ ์ˆ˜์—…์„ ๋ณต์Šตํ•˜๋Š” ์ฐจ์›์—์„œ ์ •๋ฆฌํ•˜๊ฒŒ ๋œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

4 minute read

2019-2ํ•™๊ธฐ, ๋Œ€ํ•™์—์„œ ๋“ค์€ โ€˜๋ฏธ๋ถ„๋ฐฉ์ •์‹โ€™ ์ˆ˜์—…์„ ๋ณต์Šตํ•˜๋Š” ์ฐจ์›์—์„œ ์ •๋ฆฌํ•˜๊ฒŒ ๋œ ๊ธ€์ž…๋‹ˆ๋‹ค. ์ง€์ ์€ ์–ธ์ œ๋‚˜ ํ™˜์˜์ž…๋‹ˆ๋‹ค :)

๋ฏธ๋ถ„ ๋ฐฉ์ •์‹์ด๋ž€?

๋จผ์ € <๋ฏธ๋ถ„ ๋ฐฉ์ •์‹>์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋“ค์–ด๊ฐ€๊ธฐ์— ์•ž์„œ, ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹์ด ๋ฌด์—‡์ธ์ง€ ํ™•์ธํ•ด๋ณด์ž.

์šฐ๋ฆฌ์—๊ฒŒ $y(t) = \sin t$๋ผ๋Š” ํ•จ์ˆ˜๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค๊ณ  ํ•ด๋ณด์ž. ๊ทธ๋Ÿฌ๋ฉด, ์ด sin ํ•จ์ˆ˜์ธ $y(t)$๋Š” ๋‹น์—ฐํžˆ ์•„๋ž˜์˜ ์‹์„ ๋งŒ์กฑํ•  ๊ฒƒ์ด๋‹ค.

\[y^2 + \cos^2 t = 1\]

์ด๋•Œ, $\cos t = (\sin t)โ€™$์ž„์„ ์•Œ๊ณ  ์žˆ์œผ๋ฏ€๋กœ ์œ„์˜ ์‹์„ ๋ฐ”๊ฟ”์“ฐ๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[y^2 = (y')^2 = 1\]

๋˜๋Š” $yโ€™โ€™ = -\sin t$์ž„์„ ํ™œ์šฉํ•ด ์•„๋ž˜์™€ ๊ฐ™์€ ๋ฐฉ์ •์‹์„ ์„ธ์šธ ์ˆ˜๋„ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

\[y'' + y = 0\]

์šฐ๋ฆฌ๋Š” ์œ„์˜ ๋‘ ๋ฐฉ์ •์‹๊ณผ ๊ฐ™์ด ๋ฐฉ์ •์‹ ์•ˆ์— <derivative> ํ…€์ด ์กด์žฌํ•˜๋Š” ๊ฒƒ์„ <๋ฏธ๋ถ„ ๋ฐฉ์ •์‹ differential equations>๋ผ๊ณ  ๋ถ€๋ฅผ ๊ฒƒ์ด๋‹ค.

์ด๋•Œ, ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹์—์„œ ๊ฐ€์žฅ ๋†’์€ derivative์˜ ์ฐจ์ˆ˜๋ฅผ DE์˜ โ€œorderโ€œ๋ผ๊ณ  ํ•œ๋‹ค.

๋งˆ์ง€๋ง‰์œผ๋กœ DE๋ฅผ ๋งŒ์กฑํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  $y(t)$๋ฅผ ์ฐพ๋Š” ๊ฒƒ์„ ์šฐ๋ฆฌ๋Š” โ€œsolve ODEโ€œ๋ผ๊ณ  ํ•œ๋‹ค.


DE์—๋Š” ํฌ๊ฒŒ ๋‘๊ฐ€์ง€ ํƒ€์ž…์ด ์žˆ๋‹ค.

Type I.

\[y' = f(t) \quad \rightarrow \quad y = \int f(t) dt + C\]

Type II.

\[y' = ky \quad \rightarrow \quad y = Ce^{kt}\]

์ดˆ๊ธ‰ ์ˆ˜์ค€์˜ DE๋Š” ๋ชจ๋‘ ์œ„์˜ ๋‘ ๊ฐ€์ง€ ํƒ€์ž…์„ ์ž˜ ์กฐํ•ฉํ•œ ๊ฒƒ์— ๋ถˆ๊ณผํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹์„ ์ž˜ ์ •๋ฆฌํ•˜๋ฉด ์‰ฝ๊ฒŒ DE๋ฅผ ํ’€ ์ˆ˜ ์žˆ๋‹ค.


Linear ODE

์•ž์—์„œ ODE์˜ ๋‘ ๊ฐ€์ง€ ํƒ€์ž…์„ ์‚ดํŽด๋ดค๋‹ค. ๊ทธ๋Ÿฐ๋ฐ, ์ด ๋‘ ๊ฐ€์ง€ ํƒ€์ž…์€ ์ง€๊ธˆ ์†Œ๊ฐœํ•  Linear ODE์˜ ํŠน์ˆ˜ํ•œ ๊ฒฝ์šฐ๋‹ค.

Definition. Linear ODE

์šฐ๋ฆฌ๋Š” ์•„๋ž˜์™€ ๊ฐ™์€ ํ˜•ํƒœ์˜ DE๋ฅผ <Linear ODE>๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค.

\[y' = a(t) y + b(t)\]

์ด๋Ÿฐ Linear ODE์˜ ์˜ˆ๋ฅผ ์‚ดํŽด๋ณด์ž.

\[y' = t^2 y + \sin t\]

์œ„์™€ ๊ฐ™์€ DE๋Š” Type I๋„, Type II๋„ ์•„๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์•„๋ž˜์— ์†Œ๊ฐœํ•  <Integrating Factor> ๋ฐฉ๋ฒ•์œผ๋กœ ์‹์„ ๋ณ€ํ˜•ํ•ด Type I or II๋กœ DE๋ฅผ reduction ์‹œ์ผœ์•ผ ํ•œ๋‹ค.

Integrating Factor

For given ODE, $yโ€™ = ay + b$, letโ€™s introduce $\mu (t) \ne 0$. Then

\[y' = ay + b \iff \mu y' = \mu (ay + b)\]

์ด์ œ ์šฐ๋ณ€์—์„œ y์˜ ํ…€์„ ์ขŒ๋ณ€์œผ๋กœ ์˜ฎ๊ฒจ์ฃผ์ž.

\[\mu y' = \mu (ay + b) \iff \mu y' - \mu ay = \mu b\]

์ด์ œ $\mu$์— ๋Œ€ํ•ด $\muโ€™ = - a \mu$๋ผ๊ณ  ๊ฐ€์ •ํ•˜์ž! (์ด ๋ถ€๋ถ„์—์„œ ์ž˜ ์™€๋‹ฟ์ง€ ์•Š์„ ์ˆ˜๋„ ์žˆ๋Š”๋ฐ, ์ด๋ ‡๊ฒŒ ํ•ด๋„ ์ง€๊ธˆ๊นŒ์ง€์˜ ๊ณผ์ •์„ violate ํ•˜์ง€ ์•Š์Œ์„ ์ƒ๊ธฐํ•˜๋ผ!)

๊ทธ๋Ÿฌ๋ฉด, ์ง์ „์˜ DE์—์„œ ์ขŒ๋ณ€์€

\[\mu y' - \mu ay = \mu y' + \mu' y = (\mu y)'\]

๊ฐ€ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ์ค€์‹์€

\[(\mu y)' = \mu b\]

๊ฐ€ ๋˜๋ฏ€๋กœ ์šฐ๋ฆฌ๊ฐ€ ํ’€๊ธฐ ์‰ฌ์šด Type I์ด ๋˜์—ˆ๋‹ค!! ์ด์ œ ์ด $(\mu y)$์— ๋Œ€ํ•œ DE๋ฅผ ํ’€๋ฉด

\[(\mu y)' = \mu b \quad \rightarrow \quad \mu y = \int \mu b + C \quad \implies \quad y = \frac{1}{\mu} \left( \int \mu b + C \right)\]

์ด์ œ ์•ž์—์„œ ๊ฐ€์ •ํ–ˆ๋˜ $\muโ€™ = - a \mu$๋ฅผ ํ•ด๊ฒฐํ•˜๋ฉด ๋œ๋‹ค. ์ด DE๋Š” Type II์ด๋ฏ€๋กœ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์‰ฝ๊ฒŒ ํ’€ ์ˆ˜ ์žˆ๋‹ค.

\[\mu' = -a \mu \quad \iff \quad \frac{\mu'}{\mu} = - a(t) \quad \rightarrow \quad \ln \mu = - \int a(t) \iff \mu = e^{\displaystyle - \int a(t)}\]

์ด์ œ $\mu$์— ๋Œ€ํ•œ ์œ„์˜ ๊ฒฐ๊ณผ๋ฅผ ๋Œ€์ž…ํ•˜๋ฉด Linear DE์— ๋Œ€ํ•œ solution์„ ๊ตฌํ•œ ๊ฒƒ์ด๋‹ค.

\[y'(t) = a(t) y(t) + b(t) \quad\iff\quad y(t) = e^{\int a(t)} \left( \int \left(e^{-\int a(t)}\right) b(t) +C \right)\]