Introduction

9 minute read

Introduction

Partial Covariance/Correlation๋Š” ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋…๋ฆฝ๋ณ€์ˆ˜(IV)์™€ ํ•˜๋‚˜์˜ ์ข…์†๋ณ€์ˆ˜(DV)๊ฐ€ ์žˆ๋Š” ์ƒํ™ฉ์—์„œ ๋“ฑ์žฅํ•˜๋Š” ๊ฐœ๋…์ด๋‹ค.

์šฐ๋ฆฌ๋Š” ๋…๋ฆฝ๋ณ€์ˆ˜๋ฅผ ํ•˜๋‚˜๋ฅผ ์žก๊ณ , ๊ทธ ๋…€์„๊ณผ ์ข…์†๋ณ€์ˆ˜์˜ Covariance๋ฅผ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งŒ์•ฝ์— ์กด์žฌํ•˜๋Š” ๋…๋ฆฝ๋ณ€์ˆ˜๋“ค ์‚ฌ์ด์— ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์—†๋‹ค๋ฉด, ์ƒํ™ฉ์€ ์•„์ฃผ ๊ฐ„๋‹จํ•˜๋‹ค. ๊ทธ๋ƒฅ $\text{Cor}(\text{IV}, \text{DV})$๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ๋…๋ฆฝ๋ณ€์ˆ˜ ํ•˜๋‚˜๋ฅผ ์ฐพ์œผ๋ฉด ๋œ๋‹ค. ๋˜, $r = \text{Cor}(\text{IV}, \text{DV})$๋Š” $\left[-1, +1 \right]$์˜ ๋ถ€ํ˜ธ๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์ œ๊ณฑํ•ด์„œ ์–ป์€ $r^2$ ๊ฐ’์œผ๋กœ ๊ทธ ๋…๋ฆฝ๋ณ€์ˆ˜์˜ ์„ค๋ช…๋ ฅ๋„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ๋…๋ฆฝ๋ณ€์ˆ˜๋“ค ์‚ฌ์ด์— ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์žˆ๋‹ค๋ฉด, ์ƒํ™ฉ์ด ๋ณต์žกํ•ด์ง„๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด $\text{IV}_a \rightarrow \text{DV}$๋ผ๊ณ  ํ•ด๋ณด์ž. ๊ทธ๋Ÿฐ๋ฐ ๋‹ค๋ฅธ ๋…๋ฆฝ๋ณ€์ˆ˜ $\text{IV}_b$์— ๋Œ€ํ•ด $\text{IV}_b \rightarrow \text{IV}_a$ ๊ฒƒ์ด ๋ฐํ˜€์กŒ๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด, $\text{IV}_a \rightarrow \text{DV}$๋Š” ์‚ฌ์‹ค $\text{IV}_b \rightarrow \text{DV}$๋ผ๊ณ  ๋งํ•  ์ˆ˜ ์žˆ๋‹ค.

์™œ ๋…๋ฆฝ๋ณ€์ˆ˜ ๊ฐ„์˜ ์ƒ๊ด€์„ฑ์ด ๋ฌธ์ œ๊ฐ€ ๋˜๋Š”๊ฐ€?

๋…๋ฆฝ๋ณ€์ˆ˜ ๊ฐ„์˜ ์ƒ๊ด€์„ฑ์ด ์žˆ๋Š” ์ƒํ™ฉ์€ ์™œ ๋ฌธ์ œ๊ฐ€ ๋˜๋Š” ๊ฑธ๊นŒ?๐Ÿค” $\text{Cor}(\text{IV}_a, \text{DV})$์˜ ๊ฐ’์„ ๊ณ„์‚ฐํ–ˆ๋‹ค๊ณ  ํ•ด๋ณด์ž. ๊ทธ๋Ÿฐ๋ฐ ์ด๊ฒƒ์ด $\text{IV}_a$ ๋‹จ๋…์˜ ์ˆœ์ˆ˜ํ•œ ํšจ๊ณผ์ผ๊นŒ? ์•„๋‹ˆ๋ฉด $\text{IV}_a$์™€ ์ƒ๊ด€์„ฑ์ด ์žˆ๋Š” $\text{IV}_b$์˜ ํšจ๊ณผ๊ฐ€ ์ผ๋ถ€ ๋ฐ˜์˜๋œ ๊ฒฐ๊ณผ์ผ๊นŒ?

์‹คํ—˜์ž๋Š” ๋…๋ฆฝ๋ณ€์ˆ˜ $\text{IV}_a$ ํ•˜๋‚˜๋งŒ์„ ์ปจํŠธ๋กค ํ•  ์ˆ˜ ์žˆ์–ด $\text{IV}_a$ ๋‹จ๋…์˜ ์˜ํ–ฅ๋ ฅ์„ ์•„๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•œ ์ƒํ™ฉ์ธ ๊ฑธ ์ˆ˜๋„ ์žˆ๋‹ค. ๊ฒฐ๊ตญ ๋…๋ฆฝ๋ณ€์ˆ˜ ๋‹จ๋…์˜ ์˜ํ–ฅ๋ ฅ/์„ค๋ช…๋ ฅ์„ ์•Œ๊ณ  ์‹ถ๋‹ค๋ฉด, $\text{Cor}(\text{IV}_a, \text{DV})$ ๋งŒ์œผ๋กœ๋Š” ๋ถ€์กฑํ•˜๋‹ค.

๋‹จ์ผ ๋…๋ฆฝ๋ณ€์ˆ˜๋กœ Regression Problem์„ ํ‘ธ๋Š” ์ƒํ™ฉ์—์„œ๋Š” ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ ํ•˜๋‚˜์ด๋‹ˆ ๋ณ„ ์ƒ๊ด€์ด ์—†์ง€๋งŒ, 2๊ฐœ ์ด์ƒ์˜ ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ ์žˆ๋Š” Multiple Regression Problem์—์„œ๋Š” ์ด๋Ÿฐ ๋…๋ฆฝ๋ณ€์ˆ˜ ๋‹จ๋…์˜ ์ƒ๊ด€์„ฑ์„ ์•„๋Š”๊ฒŒ ์ค‘์š”ํ•˜๋‹ค.

Partial Correlation

Partial Correlation์€ ๋‹ค๋ฅธ ๋ณ€์ˆ˜์˜ ํšจ๊ณผ๋ฅผ ๋ฐฐ์ œํ•˜๋ฉด์„œ, ๋‘ ๋ณ€์ˆ˜ ์‚ฌ์ด์˜ Correlation์„ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ๋‹ค๋ฅธ ๋ณ€์ˆ˜์˜ ํšจ๊ณผ๋ฅผ ๋ฐฐ์ œํ•˜๋Š” ๊ฒƒ์„ โ€œPartialling Outโ€œ์ด๋ผ๊ณ  ํ•œ๋‹ค.


Partial Correlation์˜ ํ‘œํ˜„๊ณผ ์„ฑ์งˆ๋ถ€ํ„ฐ ์‚ดํŽด๋ณด์ž.

Partial Correlation์€ $\rho$(rho)๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ๋‘ ๋žœ๋ค๋ณ€์ˆ˜ $X$, $Y$์— ๋Œ€ํ•ด ๋‹ค๋ฅธ ๋žœ๋ค๋ณ€์ˆ˜ $Z$๋ฅผ ๋ฐฐ์ œํ•œ Partial Correlation์€ ์•„๋ž˜์™€ ๊ฐ™์ด ๊ธฐ์ˆ ํ•œ๋‹ค.

\[\rho_{XY\cdot Z}\]

Partial Correlation๋„ Correlation๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $\left[-1, +1\right]$์˜ ๋ฒ”์œ„๋ฅผ ๊ฐ–๋Š”๋‹ค.

Exercise

๊ฐ„๋‹จํ•œ ์˜ˆ์ œ๋ฅผ ํ†ตํ•ด Partial Corr์„ ์•Œ์•„๋ณด์ž. ์˜ˆ์ œ๋Š” Statistics 101: Model Building, A Visual Guide to Partial Correlation ์˜์ƒ์˜ ๊ฒƒ์„ ๋นŒ๋ ค์™”๋‹ค. ๐Ÿ™

MTCARS๋ผ๋Š” ์œ -๋ช…ํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•  ๊ฒƒ์ด๋‹ค. ์š” GitHub ๋งํฌ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ด ์ค‘์—์„œ ์—ฐ๋น„์ธ MPG(Miles per gallon)๋ฅผ ์ข…์† ๋ณ€์ˆ˜๋กœ, DRAT(rear axle gear ratio)๊ณผ HP(engine horsepower)๋ฅผ ๋…๋ฆฝ๋ณ€์ˆ˜๋กœ ์ƒ๊ด€๊ด€๊ณ„ ๋ถ„์„์„ ์ง„ํ–‰ํ•  ๊ฒƒ์ด๋‹ค.

  • ๋…๋ฆฝ๋ณ€์ˆ˜
    • DRAT $X_1$
    • HP $X_2$
  • ์ข…์†๋ณ€์ˆ˜
    • MPG $Y$

3๊ฐœ์˜ ๋ณ€์ˆ˜์— ๋Œ€ํ•ด Correlation Matrix๋ฅผ ๊ทธ๋ ค๋ณด๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

๊ฐ ๋ณ€์ˆ˜์˜ Correlation

ํ•ด์„ํ•ด๋ณด๋ฉด,

  • MPG์™€ DRAT๋Š” 0.68๋กœ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ธ๋‹ค.
  • MPG์™€ HP๋Š” -0.78๋กœ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ธ๋‹ค.
  • ๋…๋ฆฝ๋ณ€์ˆ˜์ธ DRAT๊ณผ HP๋Š” -0.45๋กœ ์•ฝ๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ธ๋‹ค.

Correlation์€ +/- ๋ถ€ํ˜ธ๋ฅผ ๊ฐ€์ง€๋‹ˆ ์ œ๊ณฑํ•œ $r^2$๋ฅผ ์‚ฌ์šฉํ•˜์ž.

๊ฐ ๋ณ€์ˆ˜์˜ $r^2$


์ž! ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ Partial Correlation์„ ๊ตฌํ•˜๋Š” ๊ณผ์ •์ด ๋ณธ๊ฒฉ์ ์œผ๋กœ ์‹œ์ž‘๋œ๋‹ค! ๐Ÿ‘

DRAT๊ณผ MPG

๋…๋ฆฝ๋ณ€์ˆ˜ DRAT๊ณผ ์ข…์†๋ณ€์ˆ˜ MPG์˜ $r^2$ ๊ฐ’์€ 0.46์ด์—ˆ๋‹ค. ์ด๊ฒƒ์€ DRAT๋ฅผ ํ†ตํ•ด MPG๋ฅผ 0.46 ๋งŒํผ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋ง์ด๋‹ค. ์œ„์˜ ๊ทธ๋ฆผ์— $a$์— ํ•ด๋‹นํ•˜๋Š” ์˜์—ญ์ด DRAT์— ์˜ํ•ด ์„ค๋ช…๋˜๋Š” MPG์˜ ํฌ๊ธฐ๋‹ค.

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ HP์™€ MPG๋„ ์œ„์™€ ๊ฐ™์€ ๋ฒค ๋‹ค์ด์–ด๊ทธ๋žจ์„ ๊ทธ๋ฆด ์ˆ˜ ์žˆ๋‹ค. DRAT, HP, MPG 3๊ฐ€์ง€๋ฅผ ๋ชจ๋‘ ๊ทธ๋ฆฌ๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

DRAT, HP, MPG

์šฐ๋ฆฌ๊ฐ€ ์ง€๊ธˆ๊นŒ์ง€ ์–ป์€ ์ •๋ณด๋ฅผ ์ •๋ฆฌํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

  • $a + b + c + d = 1$
  • $a + b = 0.46$
  • $b + c = 0.60$

๊ทธ๋Ÿฌ๋‚˜ ์œ„์˜ 3๊ฐ€์ง€ ์ •๋ณด๋งŒ์œผ๋กœ๋Š” ๊ฐœ๋ณ„ ์š”์†Œ์˜ ๊ฐ’์„ ๊ตฌํ•  ์ˆ˜ ์—†๋‹ค. ๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” DART, HP ๋‘ ๊ฐ€์ง€ ๋…๋ฆฝ๋ณ€์ˆ˜๋กœ Multiple Regression์„ ํ–ˆ์„ ๋•Œ์˜ $R^2$ ๊ฐ’์„ ์‚ฌ์šฉํ•  ๊ฒƒ์ด๋‹ค.

\[\text{MPG} \sim \text{DRAT} + \text{HP}\]

Multiple Regression์˜ $R^2$ ๊ฐ’์€ 0.74์ด๋‹ค.

์ด๋ฅผ ํ†ตํ•ด ํ•˜๋‚˜์˜ ์ˆ˜์‹์ด ์ถ”๊ฐ€๋˜๋Š”๋ฐ, $a + b + c = 0.74$์ด๋‹ค.

๋”ฐ๋ผ์„œ, $a$, $b$, $c$, $d$์˜ ๊ฐ’์„ ๊ตฌํ•˜๋ฉด

  • $a = 0.14$
  • $b = 0.32$
  • $c = 0.28$
  • $d = 0.26$


๋“œ๋””์–ดโ€ฆ! ๐Ÿ‘ Partial Corr $\rho$๋ฅผ ๊ตฌํ•ด๋ณด์ž!

\[\left(\rho_{X_1 Y \cdot X_2}\right)^2 = \frac{a}{a + d} = \frac{0.14}{0.14 + 0.26} = 0.35\] \[\rho_{X_1 Y \cdot X_2} = \sqrt{0.35} = 0.59\] \[\left(\rho_{X_2 Y \cdot X_1}\right)^2 = \frac{c}{c + d} = \frac{0.28}{0.28 + 0.26} = 0.52\] \[\rho_{X_2 Y \cdot X_1} = - \sqrt{0.26} = -0.72\]

๋ช‡๊ฐ€์ง€ ๋ถ„์ˆ˜ ์—ฐ์‚ฐ์„ ๊ฑฐ์ณ์„œ ๋“œ๋””์–ด! Partial Correlation์„ ๊ตฌํ–ˆ๋‹ค! ๐Ÿ‘ Partial Correlation $\rho$๋ฅผ ๊ธฐ์กด์˜ Correlation ๊ฐ’๊ณผ ๋น„๊ตํ•ด๋ณด์ž!

Variable Corr Partial Corr
DRAT 0.68 0.59
HP -0.77 -0.72

Corr๋ณด๋‹ค Partial Corr์ผ ๋•Œ, ์ƒ๊ด€์„ฑ์˜ ํฌ๊ธฐ๊ฐ€ ๋” ์ž‘์•„์ง„ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค! ์ด ์‚ฌ์‹ค์€ ๋ณธ๋ž˜์˜ Corr์— ๋‹ค๋ฅธ ๋ณ€์ˆ˜์˜ ์˜ํ–ฅ์ด ์„ž์—ฌ ์žˆ์—ˆ์Œ์„ ๋งํ•ด์ค€๋‹ค.

Generalization

์œ„์˜ Exercise์—์„  2๊ฐœ์˜ ๋…๋ฆฝ๋ณ€์ˆ˜ ์˜€๊ธฐ ๋•Œ๋ฌธ์— ๋ฒค ๋‹ค์ด์–ด๊ทธ๋žจ์œผ๋กœ ์‰ฝ๊ฒŒ Partial Correlation์„ ๊ตฌํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ $N$๊ฐœ ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ ์žˆ๋Š” ์ƒํ™ฉ์ด๋ผ๋ฉด Partial Correlation์„ ์–ด๋–ป๊ฒŒ ๊ตฌํ•ด์•ผ ํ• ๊นŒ? ๐Ÿค”

๋ฐฉ๋ฒ•์€ Linear Regression์˜ ์ž”์ฐจ(Residual)๋ฅผ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค!

๋จผ์ € RV $X$, $Y$์— ๋Œ€ํ•ด $Z$๋ฅผ Partialling Outํ•œ Partiall Correlation $\rho_{XY \cdot Z}$๋ฅผ ๊ตฌํ•ด๋ณด์ž.

๋จผ์ € $Z$๋ฅผ $X$, $Y$์— ๋Œ€ํ•ด Linear Regression Fitting์„ ํ•œ๋‹ค.

\[w^{\ast}_X = \underset{w}{\text{argmin}} \left\{ \sum^N_{i=1} = (x_i - w \cdot z_i)^2 \right\}\] \[w^{\ast}_Y = \underset{w}{\text{argmin}} \left\{ \sum^N_{i=1} = (y_i - w \cdot z_i)^2 \right\}\]

๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ํ†ตํ•ด ์ž”์ฐจ(residual)์„ ๊ตฌํ•˜๋ฉด

\[e_{X, i} = x_i - w^{\ast}_X \cdot z_i\] \[e_{Y, i} = y_i - w^{\ast}_Y \cdot z_i\]

์ด์ œ ๋‘ ๋ณ€์ˆ˜์˜ ์ž”์ฐจ์— ๋Œ€ํ•œ Correlation์„ ๊ตฌํ•˜๋ฉด, ๊ทธ๊ฒƒ์ด ๋‘ ๋ณ€์ˆ˜์˜ Partial Correlation์ด๋‹ค!

\[\rho_{XY\cdot Z} = \text{Cor}(e_{X}, e_{Y})\]

์™œ ์ด๋ ‡๊ฒŒ ๊ตฌํ•˜๋Š”๊ฐ€?

์œ„์—์„œ Partialling Outํ•  ๋…๋ฆฝ๋ณ€์ˆ˜๋ฅผ ๊ฐ€์ง€๊ณ  Linear Regression์„ ํ•œ ํ›„, ์ž”์ฐจ(residual)๋ฅผ ๊ธฐ์ค€์œผ๋กœ Partial Correlation์„ ๊ตฌํ–ˆ๋‹ค. ์™œ ์ด๋ ‡๊ฒŒ ํ•œ ๊ฑธ๊นŒ?

์ผ๋‹จ ์—ฌ๊ธฐ์„œ โ€œ์ž”์ฐจโ€์˜ ์˜๋ฏธ๋Š” ๋ง ๊ทธ๋Œ€๋กœ ๋…๋ฆฝ๋ณ€์ˆ˜ $Z$์˜ ์˜ํ–ฅ๋ ฅ์„ ์ œ์™ธํ•œ ์ดํ›„์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋งํ•œ๋‹ค. ์—ฌ๊ธฐ๊นŒ์ง€๋Š” ์ž์—ฐ์Šค๋Ÿฌ์šด๋ฐ, ์™œ ๋…๋ฆฝ๋ณ€์ˆ˜ $X$์—๋„, ์ข…์†๋ณ€์ˆ˜ $Y$์— ๋Œ€ํ•ด์„œ๋„ ์ž”์ฐจ๋ฅผ ๊ตฌํ–ˆ์„๊นŒ?

$X2$๋ฅผ $X1$์—๋„ $Y$์—๋„ ๋นผ์ฃผ์—ˆ๋‹ค.

๋‹ค์‹œ ๋ฒค ๋‹ค์ด์–ด๊ทธ๋žจ์œผ๋กœ ๋Œ์•„์™€๋ณด์ž. ์šฐ๋ฆฌ๋Š” $X1$, $Y$์˜ Partial Corr๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด $X1$์™€ $Y$์—์„œ $X2$์™€ ๊ฒน์น˜๋Š” ๋ถ€๋ถ„์„ ์‹ธ-์•… ๋‚ ๋ ค์ฃผ์—ˆ๋‹ค. ๋…๋ฆฝ๋ณ€์ˆ˜, ์ข…์†๋ณ€์ˆ˜ ์–‘์ชฝ ๋ชจ๋‘ Partialling Outํ•  ๋ณ€์ˆ˜์˜ ์˜ํ–ฅ๋ ฅ์„ ์ œ๊ฑฐํ•ด์ค˜์•ผ ํ•˜๋Š” ๊ฒƒ์ด๋‹ค!

๋‹ค์‹œ Generalization

๋งˆ์ง€๋ง‰์œผ๋กœ ๋™์ผํ•œ ์ƒํ™ฉ์—์„œ Partialling Outํ•˜๋Š” ๋…๋ฆฝ๋ณ€์ˆ˜๊ฐ€ $n$๊ฐœ ์ธ $\mathbf{z} = \left\{ z_i \right\}_n$ ์ƒํ™ฉ๋งŒ ์‚ดํŽด๋ณด์ž.

\[\mathbf{w}^{\ast}_X = \underset{\mathbf{w}}{\text{argmin}} \left\{ \sum^N_{i=1} = (x_i - \left< \mathbf{w}, \mathbf{z} \right>)^2 \right\}\] \[\mathbf{w}^{\ast}_Y = \underset{\mathbf{w}}{\text{argmin}} \left\{ \sum^N_{i=1} = (y_i - \left< \mathbf{w}, \mathbf{z} \right>)^2 \right\}\]

์ด๋ฅผ ํ†ตํ•ด ์ž”์ฐจ(residual)์„ ๊ตฌํ•˜๋ฉด

\[e_{X, i} = x_i - \left< \mathbf{w}^{\ast}_X, \mathbf{z}_i \right>\] \[e_{Y, i} = y_i - \left< \mathbf{w}^{\ast}_Y, \mathbf{z}_i \right>\]

์ด์ œ ๋‘ ์ž”์ฐจ์— ๋Œ€ํ•œ Correlation์„ ๊ตฌํ•˜๋ฉด,

\[\rho_{XY\cdot \mathbf{z}} = \text{Cor}(e_{X}, e_{Y})\]

๋งบ์Œ๋ง

Partialling Out, Regression Fitting์„ ํ†ตํ•ด ๋‹ค๋ฅธ RV์˜ ์˜ํ–ฅ๋ ฅ์„ ์—†์• ๋Š” ๋ฐฉ๋ฒ•์ด์—ˆ๋‹ค. ์ƒˆ๋กญ๊ฒŒ ๋ฐฐ์šด ์š” ํ…Œํฌ๋‹‰, ๋‹ค๋ฅธ ๊ณณ์— ์จ๋ณผ ์ˆ˜ ์žˆ์ง€ ์•Š์„๊นŒ?

์ด Partial Correlation์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ EDAํ•˜๋Š” ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ Auto-Correlation๊ณผ Partial Auto-Correlation์„ ๊ณต๋ถ€ํ•˜๋ฉด์„œ ์š” ๊ฐœ๋…์ด ํ•„์š”ํ•ด ํ•œ๋ฒˆ ์ •๋ฆฌํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์ด์–ด์ง€๋Š” โ€œACF & PACFโ€ ํฌ์ŠคํŠธ์—์„œ ์š” ๊ฐœ๋…์„ ์ž˜ ํ™œ์šฉํ•ด๋ณด์ž ๐Ÿ˜‰

References