Backshift Operator
๋์
<ํ๋ฐฉ์ด๋ ์ฐ์ฐ์; backshift operator>๋ ์๊ณ์ด์ ์์ฐจ(difference)๋ฅผ ๋ค๋ฃฐ ๋ ์์ฃผ ์ ์ฉํ ์ฐ์ฐ์์ด์ ํ๊ธฐ๋ฒ์ด๋ค. ์ ์๋ ์๋์ ๊ฐ๋ค.
Definition. Backshift Operator
์ฆ, backshift operator $B$๋ ์๊ณ์ด์ ๊ฐ $y_t$๋ฅผ ํ ์์ ๋ค์ธ $y_{t-1}$๋ก ์ฎ๊ฒจ์ค๋ค.
์ด๋ฅผ ํตํด ์ฐจ๋ถ(difference)๋ฅผ ์ ๋ํ๋ฉด,
\[\begin{aligned} y'_t &= y_t - y_{t-1} \\ &= y_t - By_t \\ &= (1 - B)y_t \end{aligned}\]๋น์ทํ๊ฒ 2์ฐจ ์ฐจ๋ถ๋ ์ฝ๊ฒ ํํํ ์ ์๋ค.
\[\begin{aligned} y''_t &= y'_t - y'_{t-1} \\ &= (1-B)y_t - (1-B)y_{t-1} \\ &= (1 - B) (y_t - y_{t-1}) \\ &= (1 - B)^2 y_t \end{aligned}\]์ผ๋ฐํํ์ฌ $d$์ฐจ ์ฐจ๋ถ์ ์๋์ ๊ฐ๋ค.
\[(1 - B)^d y_t\]๊ณ์ ์ฑ ์ฐจ๋ถ(seasonal difference)๋ ์๋์ ๊ฐ์ด ํํํ ์ ์๋ค.
\[(1 - B^m)y_t\]์๊ณ์ด ๋ชจ๋ธ์ ์ ์ฉ
์ง๊ธ๊น์ง ์ดํด๋ณธ, $\text{AR}$, $\text{MA}$, $\text{ARMA}$, $\text{ARIMA}$, $\text{SARIMA}$ ๋ชจ๋ธ์ ๋ชจ๋ backshift operator๋ฅผ ์ฌ์ฉํด ํํํด๋ณด์.
Definition. AR Model w/ backshift operator
AR Model์ ์ ์๋ ์๋์ ๊ฐ๋ค.
\[y_t = \phi_0 + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t - p} + \epsilon_t\]backshift operator $B$๋ฅผ ์ ์ฉํ๋ฉด ์๋์ ๊ฐ๋ค.
\[y_t = \phi_0 + \phi_1 B y_t + \phi_2 B^2 y_t + \cdots + \phi_p B^p y_t + \epsilon_t\]ํญ์ ์ ๋ฆฌํด์ $y_t$๋ฅผ ์ผ์ชฝ์ผ๋ก ๋๊ธฐ๋ฉด,
\[(1 - \phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p) y_t = \phi_0 + \epsilon_t\]Definition. MA Model w/ backshift operator
MA Model์ ์ ์๋ ์๋์ ๊ฐ๋ค.
\[y_t = \epsilon_t + \phi_0 + \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \cdots + \phi_q \epsilon_{t - q}\]backshift operator $B$๋ฅผ ์ ์ฉํ๋ฉด ์๋์ ๊ฐ๋ค.
\[y_t = \epsilon_t + \phi_0 + \phi_1 B \epsilon_{t} + \phi_2 B^2 \epsilon_{t} + \cdots + \phi_q B^q \epsilon_{t}\]ํญ์ ์ ๋ฆฌํด์ $\epsilon_t$์ ๋ชจ์์ฃผ๋ฉด,
\[y_t = \phi_0 + (1 + \phi_1 B + \phi_2 B^2 + \cdots + \phi_q B^q) \epsilon_t\]Definition. ARMA Model w/ backshift operator
ARMA Model์ $y_t$๊ฐ AR Model์ MA Model์ ํฉ์ผ๋ก ๊ตฌ์ฑ๋ ํํ์ด๋ค.
\[\begin{aligned} y_t &= \left( \phi_0 + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t - p} + \epsilon_t \right) \\ &+ \left( \epsilon_t + \phi_0 + \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \cdots + \phi_p \epsilon_{t - p} \right) \end{aligned}\]backshift operator $B$๋ฅผ ์ ์ฉํ๊ณ , ์์ ์ ๋ฆฌํ๋ฉด,
\[(1 - \phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p) y_t = \phi_0 + (1 + \phi_1 B + \phi_2 B^2 + \cdots + \phi_q B^q) \epsilon_t\]Definition. ARIMA Model w/ backshift operator
ARIMA Model์ $d$์ฐจ ์ฐจ๋ถํ ์๊ณ์ด์ ARMA ๋ชจ๋ธ๋ง์ ํ ๊ฒ์ด๋ค. ๋ฐ๋ผ์, ARMA ๋ชจ๋ธ์ $y_t$๋ฅผ $(1 - B)^d y_t$๋ก ๋ฐ๊ฟ์ฃผ๋ฉด ๋๋ค.
\[\underset{\text{AR}}{(1 - \phi_1 B - \cdots - \phi_p B^p)} \underset{\text{difference}}{(1 - B)^d} y_t = \phi_0 + \underset{\text{MA}}{(1 + \phi_1 B + \cdots + \phi_q B^q)}\epsilon_t\]Definition. SARIMA Model w/ backshift operator
SARIMA Model์ ARIMA ๋ชจ๋ธ์ ๊ณ์ ์ฑ ARIMA ๋ชจ๋ธ๋ง์ ์ถ๊ฐํ ๊ฒ์ด๋ค.
\[\begin{aligned} \underset{\text{non-seasonal AR}}{(1 - \phi_1 B - \cdots - \phi_p B^p)} &\cdot \underset{\text{seasonal AR}}{(1 - \Phi_1 B^s - \cdots - \Phi_{p_s} B^{s\cdot p_s})} \\ \underset{\text{non-seasonal difference}}{(1 - B)^d} &\cdot \underset{\text{seasonal difference}}{(1 - B^s)^{d_s}} y_t \\ = \phi_0 + \underset{\text{non-seasonal MA}}{(1 + \phi_1 B + \cdots + \phi_q B^q)} &\cdot \underset{\text{seasonal MA}}{(1 + \Phi_1 B^s + \cdots + \Phi_{q_s} B^{s \cdot q_s})} \epsilon_t \end{aligned}\]