๋„์ž…

4 minute read

๋„์ž…

<ํ›„๋ฐฉ์ด๋™ ์—ฐ์‚ฐ์ž; backshift operator>๋Š” ์‹œ๊ณ„์—ด์˜ ์‹œ์ฐจ(difference)๋ฅผ ๋‹ค๋ฃฐ ๋•Œ ์•„์ฃผ ์œ ์šฉํ•œ ์—ฐ์‚ฐ์ž์ด์ž ํ‘œ๊ธฐ๋ฒ•์ด๋‹ค. ์ •์˜๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

Definition. Backshift Operator

\[B y_t = y_{t-1}\]

์ฆ‰, backshift operator $B$๋Š” ์‹œ๊ณ„์—ด์˜ ๊ฐ’ $y_t$๋ฅผ ํ•œ ์‹œ์  ๋’ค์ธ $y_{t-1}$๋กœ ์˜ฎ๊ฒจ์ค€๋‹ค.

์ด๋ฅผ ํ†ตํ•ด ์ฐจ๋ถ„(difference)๋ฅผ ์œ ๋„ํ•˜๋ฉด,

\[\begin{aligned} y'_t &= y_t - y_{t-1} \\ &= y_t - By_t \\ &= (1 - B)y_t \end{aligned}\]

๋น„์Šทํ•˜๊ฒŒ 2์ฐจ ์ฐจ๋ถ„๋„ ์‰ฝ๊ฒŒ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

\[\begin{aligned} y''_t &= y'_t - y'_{t-1} \\ &= (1-B)y_t - (1-B)y_{t-1} \\ &= (1 - B) (y_t - y_{t-1}) \\ &= (1 - B)^2 y_t \end{aligned}\]

์ผ๋ฐ˜ํ™”ํ•˜์—ฌ $d$์ฐจ ์ฐจ๋ถ„์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[(1 - B)^d y_t\]

๊ณ„์ ˆ์„ฑ ์ฐจ๋ถ„(seasonal difference)๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

\[(1 - B^m)y_t\]

์‹œ๊ณ„์—ด ๋ชจ๋ธ์— ์ ์šฉ

์ง€๊ธˆ๊นŒ์ง€ ์‚ดํŽด๋ณธ, $\text{AR}$, $\text{MA}$, $\text{ARMA}$, $\text{ARIMA}$, $\text{SARIMA}$ ๋ชจ๋ธ์„ ๋ชจ๋‘ backshift operator๋ฅผ ์‚ฌ์šฉํ•ด ํ‘œํ˜„ํ•ด๋ณด์ž.

Definition. AR Model w/ backshift operator

AR Model์˜ ์ •์˜๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[y_t = \phi_0 + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t - p} + \epsilon_t\]

backshift operator $B$๋ฅผ ์ ์šฉํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[y_t = \phi_0 + \phi_1 B y_t + \phi_2 B^2 y_t + \cdots + \phi_p B^p y_t + \epsilon_t\]

ํ•ญ์„ ์ •๋ฆฌํ•ด์„œ $y_t$๋ฅผ ์™ผ์ชฝ์œผ๋กœ ๋„˜๊ธฐ๋ฉด,

\[(1 - \phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p) y_t = \phi_0 + \epsilon_t\]

Definition. MA Model w/ backshift operator

MA Model์˜ ์ •์˜๋Š” ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[y_t = \epsilon_t + \phi_0 + \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \cdots + \phi_q \epsilon_{t - q}\]

backshift operator $B$๋ฅผ ์ ์šฉํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[y_t = \epsilon_t + \phi_0 + \phi_1 B \epsilon_{t} + \phi_2 B^2 \epsilon_{t} + \cdots + \phi_q B^q \epsilon_{t}\]

ํ•ญ์„ ์ •๋ฆฌํ•ด์„œ $\epsilon_t$์„ ๋ชจ์•„์ฃผ๋ฉด,

\[y_t = \phi_0 + (1 + \phi_1 B + \phi_2 B^2 + \cdots + \phi_q B^q) \epsilon_t\]

Definition. ARMA Model w/ backshift operator

ARMA Model์€ $y_t$๊ฐ€ AR Model์™€ MA Model์˜ ํ•ฉ์œผ๋กœ ๊ตฌ์„ฑ๋œ ํ˜•ํƒœ์ด๋‹ค.

\[\begin{aligned} y_t &= \left( \phi_0 + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t - p} + \epsilon_t \right) \\ &+ \left( \epsilon_t + \phi_0 + \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \cdots + \phi_p \epsilon_{t - p} \right) \end{aligned}\]

backshift operator $B$๋ฅผ ์ ์šฉํ•˜๊ณ , ์‹์„ ์ •๋ฆฌํ•˜๋ฉด,

\[(1 - \phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p) y_t = \phi_0 + (1 + \phi_1 B + \phi_2 B^2 + \cdots + \phi_q B^q) \epsilon_t\]

Definition. ARIMA Model w/ backshift operator

ARIMA Model์€ $d$์ฐจ ์ฐจ๋ถ„ํ•œ ์‹œ๊ณ„์—ด์— ARMA ๋ชจ๋ธ๋ง์„ ํ•œ ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ, ARMA ๋ชจ๋ธ์˜ $y_t$๋ฅผ $(1 - B)^d y_t$๋กœ ๋ฐ”๊ฟ”์ฃผ๋ฉด ๋œ๋‹ค.

\[\underset{\text{AR}}{(1 - \phi_1 B - \cdots - \phi_p B^p)} \underset{\text{difference}}{(1 - B)^d} y_t = \phi_0 + \underset{\text{MA}}{(1 + \phi_1 B + \cdots + \phi_q B^q)}\epsilon_t\]

Definition. SARIMA Model w/ backshift operator

SARIMA Model์€ ARIMA ๋ชจ๋ธ์— ๊ณ„์ ˆ์„ฑ ARIMA ๋ชจ๋ธ๋ง์„ ์ถ”๊ฐ€ํ•œ ๊ฒƒ์ด๋‹ค.

\[\begin{aligned} \underset{\text{non-seasonal AR}}{(1 - \phi_1 B - \cdots - \phi_p B^p)} &\cdot \underset{\text{seasonal AR}}{(1 - \Phi_1 B^s - \cdots - \Phi_{p_s} B^{s\cdot p_s})} \\ \underset{\text{non-seasonal difference}}{(1 - B)^d} &\cdot \underset{\text{seasonal difference}}{(1 - B^s)^{d_s}} y_t \\ = \phi_0 + \underset{\text{non-seasonal MA}}{(1 + \phi_1 B + \cdots + \phi_q B^q)} &\cdot \underset{\text{seasonal MA}}{(1 + \Phi_1 B^s + \cdots + \Phi_{q_s} B^{s \cdot q_s})} \epsilon_t \end{aligned}\]