3 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ํ•™๋ถ€ ์กธ์—…์‹œํ—˜์— ๋ฏธ๋ถ„๋ฐฉ์ •์‹์ด ์žˆ๋Š” ์ค„ ์•Œ๊ณ , ์‹œํ—˜ ์ค€๋น„๋„ ํ•  ๊ฒธ ๋ณตํ•™ํ•  ๋•Œ โ€œ์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹โ€ ๊ณผ๋ชฉ์„ ์‹ ์ฒญํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‚˜์ค‘์— ์•Œ๊ณ ๋ณด๋‹ˆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฒƒ ํฌ๊ธฐ๋ž€ ์—†์Šต๋‹ˆ๋‹ค!! ๐Ÿ’ช ์œผ๋ž์ฐจ!! ์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

Jordan Block

\[J = \left( \begin{matrix} \lambda & 1 \\ 0 & \lambda \end{matrix} \right)\]

์œ„์™€ ๊ฐ™์ด eigen value $\lambda$๊ฐ€ ๋Œ€๊ฐ ์˜์—ญ์— ์กด์žฌํ•˜๋Š” Upper Triangular ํ–‰๋ ฌ์„ ๋งํ•œ๋‹ค. ๊ทธ๋ƒฅ ์•ž๊ธ€์ž J๋ฅผ ๋”ฐ์„œ $J$ ํ–‰๋ ฌ๋กœ ํ‘œ๊ธฐํ•˜๊ธฐ๋„ ํ•œ๋‹ค.

eigen value๋ฅผ ๊ตฌํ•ด๋ณด๋ฉด ์ค‘๊ทผ์ธ $\lambda$๋ฅผ ๊ฐ–๊ณ , eigen vector ์—ญ์‹œ ์ค‘๋ณต(repeated)๋‹ค: $v_1 = (1, 0)$.

์ด๋Ÿฐ ๊ฒฝ์šฐ, generalized eigen vector๋ฅผ ๊ตฌํ•ด์•ผ ํ•œ๋‹ค.

Generalized Eigen Vector

๋ณธ๋ž˜ ๊ทธ๋ƒฅ eigen value๋Š” $(J - \lambda I) v_1 = 0$์ด ๋˜๋Š” $v_1$์„ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฐ๋ฐ, Generalized Eigen Vector๋Š” eigen vector $v_1$์ด ๊ตฌํ•˜์ง„ ์ƒํƒœ์—์„œ ๊ตฌํ•˜๋Š” ๋ฒกํ„ฐ๋กœ ์•„๋ž˜์˜ ํ–‰๋ ฌ์‹์„ ๋งŒ์กฑํ•˜๋Š” $v_2$๋ฅผ ์ฐพ๋Š”๋‹ค.

\[(J - \lambda I) v_2 = v_1\]

์œ„์˜ ์‹์„ ๊ตฌํ•ด๋ณด๋ฉด, $v_2 = (0, 1)$์ด ๋‚˜์˜ค๊ณ , ์ •๋ง ์ข‹๊ฒŒ๋„!! $v_1$๊ณผ ์ง๊ตํ•œ๋‹ค ใ…Žใ…Ž

Jordan Block Case of 1st Order Linear ODE

Solve the 1st order linear system

\[x' = J x\]

where $J$ is Jordan block described above.

์•ž์—์„œ eigen vector $v_1$๊ณผ generalized eigen vector $v_2$์„ ๊ตฌํ–ˆ์œผ๋ฏ€๋กœ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ธฐ์ € ํ•ด๋ฅผ ๊ตฌํ•ด๋ณด๋ฉด

\[x_1(t) = v_1 e^{\lambda t} = \left( \begin{matrix} 1 \\ 0 \end{matrix} \right) e^{\lambda t}\] \[x_2(t) = e^{\lambda t} (t v_1 + v_2) = \left( \begin{matrix} t \\ 1 \end{matrix} \right) e^{\lambda t}\]

๊ทธ๋ฆฌ๊ณ  general solution์„ ์ด ๋‘˜์˜ ์ผ์ฐจ๊ฒฐํ•ฉ์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ๋œ๋‹ค.


์ด๊ฒƒ์˜ Phase Portrait์„ ๊ทธ๋ ค๋ณด๋Š”๊ฒŒ ์ข€ ์–ด๋ ค์› ๋Š”๋ฐ,

๋จผ์ €, $x_1(t)$์˜ ๊ถค์ ์„ ์ƒ๊ฐํ•ด๋ณด๋ฉด, ๊ทธ๋ƒฅ $x$์ถ•์—์„œ ์›์ ์— ๊ฐ€๊นŒ์›Œ์ง€๊ฑฐ๋‚˜, ๋ฉ€์–ด์ง€๋Š” ํ˜•ํƒœ์ด๋‹ค.

์—ฌ๋Ÿฌ์šด ๊ฑด $x_2(t)$์ธ๋ฐ, $(t, 1)$๋งŒ ์ƒ๊ฐํ•˜๋ฉด, $y=1$์ธ ์ง์„  ์œ„์—์„œ $+x$ ๋ฐฉํ–ฅ์œผ๋กœ ์ด๋™ํ•˜๋Š” ๊ถค์ ์ด์—ˆ์„ ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ $e^{\lambda t}$ํ…€์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์ด๋ฅผ ๊ฐ™์ด ๊ณ ๋ คํ•˜๋ฉด $(t e^t, e^t)$์ธ๋ฐโ€ฆ ๋ญ”๊ฐ€ ์ž˜ ์•ˆ ๋– ์˜ฌ๋ผ์„œ Demos์— ๊ทธ๋ ค๋ดค๋‹ค ใ…‹ใ…‹

$t \rightarrow -\infty$๋ผ๋ฉด, ์›์  $O$์— ๊ฐ€๊นŒ์›Œ์ง„๋‹ค. ๋ฐ˜๋ฉด, $t = 0$๋ถ€ํ„ฐ๋Š” x, y ๊ฐ’ ๋‘˜๋‹ค ๋ฌดํ•œ์„ ํ–ฅํ•ด ๋ป—์–ด๊ฐ„๋‹ค.

๋งŒ์•ฝ $x_2(t)$์— ๊ณ„์ˆ˜ $c_2 = -1$๋ฅผ ๊ณฑํ•ด์„œ ๋น„๊ตํ•ด๋ณด๋ฉด ์š”๋Ÿฐ ์†Œ์šฉ๋Œ์ด? ๊ฐ™์€ ํŒจํ„ด์ด ๋‚˜์˜จ๋‹ค.

๊ณ„์ˆ˜ $c_2 = 2$๋ฅผ ์ ์šฉํ•ด์„œ ๋˜ ์ค‘์ฒฉํ•ด์„œ ๋ณด๋ฉด ์š”๋Ÿฐ ๋Š๋‚Œ์ด๋‹ค.

general solution์„ ์ข…ํ•ฉํ•ด Phase Portrait์„ ๊ทธ๋ ค๋ณด๋ฉดโ€ฆ

์š”๋Ÿฐ $(1 + t, 1)$ ํ˜•ํƒœ์˜ ๋ณ€ํ™˜์„ ์ „๋‹จ(sheer) ๋ณ€ํ™˜์ด๋ผ๊ณ  ํ•œ๋‹ค.