2nd order ODE๋ฅผ Systems of ODE๋กœ ํ‘œํ˜„ ํ–ˆ์„ ๋•Œ, ์ค‘๊ทผ์„ ๊ฐ–๋Š” ๊ฒฝ์šฐ๋ผ๋ฉด ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ์–ด๋–ป๊ฒŒ ํ•ด์„ํ•ด์•ผ ํ• ๊นŒ?

7 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ํ•™๋ถ€ ์กธ์—…์‹œํ—˜์— ๋ฏธ๋ถ„๋ฐฉ์ •์‹์ด ์žˆ๋Š” ์ค„ ์•Œ๊ณ , ์‹œํ—˜ ์ค€๋น„๋„ ํ•  ๊ฒธ ๋ณตํ•™ํ•  ๋•Œ โ€œ์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹โ€ ๊ณผ๋ชฉ์„ ์‹ ์ฒญํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‚˜์ค‘์— ์•Œ๊ณ ๋ณด๋‹ˆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฒƒ ํฌ๊ธฐ๋ž€ ์—†์Šต๋‹ˆ๋‹ค!! ๐Ÿ’ช ์œผ๋ž์ฐจ!! ์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

๋“ค์–ด๊ฐ€๋ฉฐ

๋ฏธ๋ถ„๋ฐฉ์ •์‹์„ ์‚ดํŽด๋ณผ ๋•Œ๋Š” ๋Š˜ ๋‚˜์ด์Šคํ•œ ์ƒํ™ฉ๋งŒ ์žˆ์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค๋ฉด, 2์ฐจ ๋™์ฐจ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์„ ํ’€ ๋•Œ, ์ค‘๊ทผ(repeated root)์ด ๋‚˜์˜ค๋Š” ๊ฒฝ์šฐ๊ฐ€ ๊ทธ๋ ‡๊ณ , ํ–‰๋ ฌ $A$์˜ ๊ณ ์œ ๊ฐ’์ด ์ค‘๋ณต๋„๋ฅผ ๊ฐ–๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์‹œํ—˜์ด๋‚˜ ๋ฌธ์ œ๋Š” ๋Š˜ ์ €๋Ÿฐ ์ƒํ™ฉ์—์„œ ๋‚˜์˜ค๋Š” ๋ฒ•โ€ฆ ใ… ใ… 

Generalized Eigen Values ํฌ์ŠคํŠธ์—์„œ ๊ณ ์œ ๊ฐ’์ด ์ค‘๋ณต๋„๋ฅผ ๊ฐ–๋Š” ๊ฒฝ์šฐ๋ฅผ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ , ์ด๋ฅผ ํ™œ์šฉํ•ด ํ–‰๋ ฌ $A$๊ฐ€ Jordan block์ธ $\mathbf{x}โ€™ = J \mathbf{x}$ ์ผ€์ด์Šค๋„ ํฌ์ŠคํŠธ๋กœ ์ •๋ฆฌํ•ด ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค.

์ด๋ฒˆ์—๋Š” ์ด๊ฒƒ์„ 2nd order homogeneous linear ODE ๊ฒฝ์šฐ์—์„œ ์‚ดํŽด๋ณด๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค!!

2nd order homogeneous linear ODE

์š” ๋ถ€๋ถ„์€ 2ํ•™๋…„ ์ˆ˜์—…์ธ ๋ฏธ๋ฐฉ ์ˆ˜์—…์—์„œ ๊ฒฝํ—˜ ํ–ˆ์Šต๋‹ˆ๋‹ค. #

\[x'' + a x' + b x = 0\]

๊ทธ๋ฆฌ๊ณ  ์œ„์™€ ๊ฐ™์€ ODE๋ฅผ ํ’€๊ธฐ ์œ„ํ•ด ํŠน์„ฑ ๋ฐฉ์ •์‹์˜ ํ•ด๋ฅผ ๊ตฌํ–ˆ์Šต๋‹ˆ๋‹ค.

\[\lambda^2 + a \lambda + b = 0\]

์š”๋Ÿฐ ํŠน์„ฑ๋ฐฉ์ •์‹์„ ํ’€์—ˆ์ฃ .

๊ทธ๋Ÿฐ๋ฐ, ์—ฌ๊ธฐ์—์„œ๋„ ์ค‘๊ทผ์ธ ๊ฒฝ์šฐ๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค๋ฉด, $xโ€™โ€™ - 2 xโ€™ + 1 = 0$๋ผ๋Š” ODE ์˜€๋‹ค๋ฉด $\lambda = 1$๋กœ ์ค‘๊ทผ์ด์—ˆ๊ณ , solution์€ ์•„๋ž˜์™€ ๊ฐ™์€ ํ˜•ํƒœ ์˜€์Šต๋‹ˆ๋‹ค.

\[x(t) = c_1 e^{t} + c_2 t e^{t}\]

๊ทธ๋Ÿฐ๋ฐ, ์ด๋Ÿฐ $te^{t}$๊ฐ€ ์žˆ๋Š” ํ˜•ํƒœ! 4ํ•™๋…„ ๊ณผ๋ชฉ์ธ ์ƒ๋ฏธ๋ฐฉ์˜ $\mathbf{x}โ€™ = J \mathbf{x}$์—์„œ๋„ ๋ณผ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ!

Jordan Form ODE

์ด์— ๋Œ€ํ•œ ๊ฒฝ์šฐ๋Š” ๋ณ„๋„ ํฌ์ŠคํŠธ์—์„œ ์ถฉ๋ถ„ํžˆ ๋‹ค๋ค˜์œผ๋‹ˆ ๊ฒฐ๋ก ๋งŒ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

\[\mathbf{x}' = J\mathbf{x}, \qquad J = \left( \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right)\]

์œ„์™€ ๊ฐ™์€ ODE ํ–‰๋ ฌ์ด ์žˆ์„ ๋•Œ, ์†”๋ฃจ์…˜์€

\[\mathbf{x}(t) = c_1 \left( \begin{matrix} 1 \\ 0 \end{matrix}\right) e^{t} + c_2 \left( \begin{matrix} t \\ 1 \end{matrix} \right) e^{t}\]

์œ„์˜ ์†”๋ฃจ์…˜์—์„œ $x_1(t)$ ์„ฑ๋ถ„์— ๋Œ€ํ•œ ์‹์ด 2nd order homogeneous linear ODE์™€ ๋™์ผํ•˜๋‹ค๊ณ , ์ƒ๊ฐํ–ˆ๊ณ , ๋‘˜์ด ์–ด๋–ค ๊ด€๊ณ„๊ฐ€ ์žˆ์„๊นŒ?? ๊ณ ๋ฏผํ•˜๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

Systems of ODEs

2ํ•™๋…„ ๋ฏธ๋ฐฉ์˜ ๋๋ถ€๋ถ„์—๋Š” ๊ธฐ์กด์˜ n์ฐจ ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹์„ n ์ฐจ์› ํ–‰๋ ฌ $A \in \mathbb{R}^{n\times n}$์œผ๋กœ ํ‘œํ˜„ํ•˜์—ฌ ์•„๋ž˜์™€ ๊ฐ™์€ ํ–‰๋ ฌ ๋ฏธ๋ฐฉ์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๋ฐฐ์›๋‹ˆ๋‹ค.

\[\mathbf{x}' = A\mathbf{x}\]

์ด๊ฒƒ์„ ๊ทธ๋Œ€๋กœ 2nd order homogeneous linear ODE์— ์ ์šฉํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ์ ์šฉํ•  2nd order linear ODE๋Š” ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[x''(t) - 2 x'(t) + x(t) = 0\]

๊ทธ๋ฆฌ๊ณ  ๋ฏธ๋ฐฉ ์‹œ์Šคํ…œ์—์„œ์˜ ํ‘œ๊ธฐ๋Š” $x_1(t) = x(t)$, $x_2(t) = xโ€™(t)$๋กœ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

\[\left( \begin{matrix} x_1 \\ x_2 \end{matrix} \right)' = \left( \begin{matrix} 0 & 1 \\ -1 & 2 \end{matrix} \right) \left( \begin{matrix} x_1 \\ x_2 \end{matrix} \right)\]

์ฒซ๋ฒˆ์งธ ํ–‰์€ $x_1โ€™(t) = x_2(t) = xโ€™(t)$์ž„์„ ํ‘œํ˜„ํ•œ ๊ฒƒ์ด๊ณ , ๋‘๋ฒˆ์งธ ํ–‰์€ $x_2โ€™(t) = x^{\prime\prime}(t) = - x_1(t) + 2 x_2(t)$๋ฅผ ํ‘œํ˜„ํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค.

๋ฏธ๋ถ„ ์‹œ์Šคํ…œ์„ ํ’€๊ธฐ ์œ„ํ•ด, ์œ„ ํ–‰๋ ฌ์˜ ๊ณ ์œ ๊ฐ’๊ณผ ๊ณ ์œ ๋ฒกํ„ฐ๋ฅผ ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฉด, $\lambda = 1$ ์ค‘๊ทผ๊ณผ ๊ณ ์œ ๋ฒกํ„ฐ $v_1 = (1, 1)^T$๋ฅผ ์–ป๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ค‘๊ทผ์ด๊ธฐ ๋•Œ๋ฌธ์—, Generalized Eigen Vector๋ฅผ ๊ตฌํ•ด์•ผ ํ•˜๊ณ , ์ด๋ฅผ ํ˜•์‹์— ๋งž์ถฐ์„œ ๊ตฌํ•ด๋ณด๋ฉดโ€ฆ $w = (0, 1)^T$๋ฅผ ์–ป๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

์ด์ œ ์†”๋ฃจ์…˜์„ ์ ์–ด๋ณด๋ฉดโ€ฆ

\[\mathbf{x}(t) = \left( \begin{matrix} x_1 \\ x_2 \end{matrix} \right) = c_1 e^{t} \left( \begin{matrix} 1 \\ 1 \end{matrix} \right) + c_2 e^{t} \left( \begin{matrix} 0 \\ t \end{matrix} \right)\]

๋ฅผ ์–ป๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์ œ๊ฐ€ ์ดํ•ด๊ฐ€ ์•ˆ ๋˜์—ˆ๋˜ ๋ถ€๋ถ„์€ ์—ฌ๊ธฐ์„œ ๋ถ€ํ„ฐ์ž…๋‹ˆ๋‹ค ๐Ÿ˜ตโ€๐Ÿ’ซ

์™œ ์ œ๋Œ€๋กœ๋œ ์†”๋ฃจ์…˜์„ ์•ˆ ์ฃผ๋Š” ๊ฑธ๊นŒ?

์œ„์˜ ์†”๋ฃจ์…˜์— ๋”ฐ๋ฅด๋ฉด, ํ•ด๋Š” $x(t) = x_1(t) = c_1 e^t$์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์šฐ๋ฆฌ๋Š” 2nd order linear ODE๊ฐ€ ์ค‘๊ทผ์„ ๊ฐ€์งˆ ๋•Œ์˜ ํ•ด์—๋Š” $te^{t}$ ํ…€์ด ๋“ค์–ด๊ฐ„๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

๋ฐ˜๋ฉด์—, $te^{t}$ ํ…€์€ $x_2(t) = xโ€™(t)$์— ๋“ค์–ด๊ฐ€์žˆ์Šต๋‹ˆ๋‹ค. ์ด๊ฒŒ ๋ฌด์Šจ์ผ ์ผ๊นŒ์š”??

์‚ฌ์‹ค ์ œ๋Œ€๋กœ๋œ ๊ฒŒ ๋งž์Šต๋‹ˆ๋‹ค.

์ œ๋Œ€๋กœ ๋œ ๊ฒŒ ๋งž์Šต๋‹ˆ๋‹คโ€ฆ!! ๐Ÿ˜ฎ

์ผ๋‹จ $x(t) = c_1 e^{t}$๋ผ๋Š” ๊ฒฐ๊ณผ, ์ด๊ฒƒ ์ž์ฒด๋„ ์ด๋ฏธ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์˜ ์†”๋ฃจ์…˜์ž…๋‹ˆ๋‹ค. ๋ฏธ๋ถ„๋ฐฉ์ •์‹์— ๋Œ€์ž… ํ•ด๋ณด๋ฉด ์‹์„ ๋งŒ์กฑํ•˜์ฃ . ๋‹ค๋งŒ, General Solution์ด ์•„๋‹ˆ๊ณ , $te^{t}$ ํ…€์ด ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค.

$xโ€™(t) = (c_1 + c_2) e^{t} + c_2 t e^{t}$๋ผ๋Š” ๊ฒƒ๋„ ํ‹€๋ฆฐ ๋ง์ด ์•„๋‹™๋‹ˆ๋‹ค!! ์‹ค์ œ๋กœ ์šฐ๋ฆฌ๊ฐ€ ์•Œ๊ณ  ์žˆ๋Š” 2nd order ODE์˜ ์†”๋ฃจ์…˜ $x(t)$๋ฅผ ๋ฏธ๋ถ„ํ•˜๋ฉดโ€ฆ

\[\begin{aligned} x'(t) &= (c_1 e^{t} + c_2 t e^{t})' \\ &= c_1 e^{t} + c_2 e^{t} + c_2 t e^{t} \\ &= (c_1 + c_2) e^{t} + c_2 t e^{t} \end{aligned}\]

์ฆ‰, ๋ฏธ๋ถ„ ์‹œ์Šคํ…œ์„ ํ’€์–ด์„œ ๋‚˜์˜จ ๊ฒฐ๊ณผ, ๊ทธ๋Œ€๋กœ ๋‚˜์˜ต๋‹ˆ๋‹ค!!

๊ทธ๋ž˜์„œ ๊ฒฐ๋ก ์€ ์šฐ๋ฆฌ๋Š” ๋ฏธ๋ถ„ ์‹œ์Šคํ…œ์˜ $x_2(t) = xโ€™(t)$์— ๋Œ€ํ•œ ๊ฒƒ์„ ์ ๋ถ„ํ•˜์—ฌ, $x(t)$์˜ ์†”๋ฃจ์…˜์„ ์ œ๋Œ€๋กœ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

\[x(t) = \int x'(t) \, dx = \int \left( (c_1 + c_2) e^{t} + c_2 t e^{t} \right) \, dx = c_1 e^{t} + c_2 t e^{t}\]

์ •๋ฆฌํ•˜๋ฉด

๋ฏธ๋ถ„ ์‹œ์Šคํ…œ์˜ ํ•ด์—์„œ $x_1(t) = x(t)$์— ๋Œ€ํ•œ ๋ถ€๋ถ„์€ General Solution์˜ ์ผ๋ถ€๋งŒ์„ ์ œ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์€ ์ฒซ๋ฒˆ์งธ ๊ณ ์œ  ๋ฒกํ„ฐ์— ๋Œ€ํ•œ ์ •๋ณด๋งŒ์ด ๋‹ด๊ฒจ์žˆ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์™„์ „ํ•œ ํ•ด๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” $x_2(t) = xโ€™(t)$๋ฅผ ์ ๋ถ„ํ•˜์—ฌ ์–ป์–ด์•ผ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์ผ๋ฐ˜ํ™”๋œ ๊ณ ์œ  ๋ฒกํ„ฐ์— ๋Œ€ํ•œ ์ •๋ณด๋Š” $x_2(t)$์˜ ํ•ด์— ๋‹ด๊ฒจ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.

๋งบ์Œ๋ง

์ด ๊ธ€์—์„œ๋Š” 2์ฐจ ์„ ํ˜• ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹๊ณผ ์„ ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ๊ณ ์ฐฐํ•ด๋ณด์•˜์Šต๋‹ˆ๋‹ค. ๋ฏธ๋ถ„ ์‹œ์Šคํ…œ์˜ ํ•ด์—์„œ General Solution์„ ์œ ๋„ํ–ˆ๊ณ , ๊ทธ ๊ณผ์ •์—์„œ ๊ณ ์œ  ๋ฒกํ„ฐ์™€ ์ผ๋ฐ˜ํ™”๋œ ๊ณ ์œ  ๋ฒกํ„ฐ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋“ฑ์žฅํ•˜๋Š”์ง€ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค.