๋ฏธ๋ถ„๋ฐฉ์ •์‹์—์„œ ๋งŒ๋‚˜๋Š” ๋ถ€๋“ฑ์‹. ๊ฐ„๋‹จํ•˜์ง€๋งŒ ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ!!

6 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค๋งŒโ€ฆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๋Œ€์ƒ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฑธ ๋‚˜์ค‘์— ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฑฐ ๋‹ค์‹œ ๋ณต์Šต ์ข€ ํ•ด๋ด…์‹œ๋‹ค! ๐Ÿƒ ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

๋“ค์–ด๊ฐ€๋ฉฐ

๊ฒฝ๊ณ ํ•˜๋Š”๋ฐ ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ ์ง„์งœ ์™„์ „ํžˆ ์ƒˆ๋กœ์šด ๋‚ด์šฉ์ž…๋‹ˆ๋‹คโ€ฆ;; ์ง€๊ธˆ๊นŒ์ง€๋Š” ๋ฏธ๋ถ„๋ฐฉ์ •์‹์˜ ์‹ฌํ™” ๋ฒ„์ „์„ ํ•˜๋Š” ๋Š๋‚Œ์ด์—ˆ๋‹ค๋ฉด, ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ ์ง„์งœ MATH4xx ๊ณผ๋ชฉ์˜ ์œ„์—„์ด ๋ญ”์ง€ ์ž‘์‚ด๋‚˜๊ฒŒ ๋Š๋‚„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ใ…‹ใ…‹

์ด ์ฑ•ํ„ฐ์˜ ๋ชฉํ‘œ๋Š” ODE์˜ solution์ด ์กด์žฌ(Existence)ํ•˜๊ณ  ๊ทธ๋ฆฌ๊ณ  ์œ ์ผ(Uniqueness)ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ์ €๋Š” ๊ฐ์ž(๐Ÿฅ”)๋‹ˆ๊นŒ ๊ทธ ์ฃผ๋ณ€ ๊ณ๋‹ค๋ฆฌ๋ถ€ํ„ฐ ๋‹ค๊ฐ€๊ฐ€๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.

[Existence and Uniqueness์˜ ๊ณ๋‹ค๋ฆฌ๋“ค]

์ˆœ์„œ๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค.

Gronwallโ€™s Inequality

๋ฏธ๋ถ„๋ฐฉ์ •์‹์— ๋Œ€ํ•ด ์„ฑ๋ฆฝํ•˜๋Š” ์ผ๋ฐ˜์ ์ธ ํ˜•ํƒœ์˜ ๋ถ€๋“ฑ์‹์ž…๋‹ˆ๋‹ค. ์ฒ˜์Œ์—๋Š” ์ด๊ฒŒ ์–ด๋–ค ์˜๋ฏธ์ธ์ง€ ์ž˜ ์™€๋‹ฟ์ง€ ์•Š์•„์„œ ์ดํ•ดํ•˜๋Š”๋ฐ ์‹œ๊ฐ„์ด ์ข€ ๊ฑธ๋ ธ์Šต๋‹ˆ๋‹ค. ๋‹ค๋ฅธ ์ž‘์—…๋“ค์„ ์ข€ ํ•˜๋‹ค๊ฐ€ ๋‹ค์‹œ ๋Œ์•„์˜ค๋‹ˆ ๋จธ๋ฆฌ๊ฐ€ ๋ง‘์•„์กŒ๋Š”์ง€ ์ด์ œ ์ดํ•ด๊ฐ€ ์ข€ ๋˜๋„ค์š” ใ…Žใ…Ž

์ผ๋‹จ ์ด ๋ถ€๋“ฑ์‹์—๋Š” (1) ๋ฏธ๋ถ„ ํผ(form)๊ฐ€ (2) ์ ๋ถ„ ํผ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ผ๋‹จ ์‰ฌ์šด ๋ฒ„์ „์€ ๋ฏธ๋ถ„ ํผ์ž…๋‹ˆ๋‹ค. ๋ฏธ๋ถ„ํผ๋ถ€ํ„ฐ ๋ณด๋Š”๊ฒŒ ์‰ฌ์šด ๊ธธ์ธ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค.

Differential Form

์šฐ๋ฆฌ๋Š” $uโ€™(t) = \beta(t) u(t)$๋ผ๋Š” ๋ฏธ๋ถ„๋ฐฉ์ •์‹์ด ์žˆ์„ ๋•Œ, ์ด๊ฒƒ์„ ํ‘ธ๋Š” ๋ฐฉ๋ฒ•์„ ์ž˜ ์•Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ƒฅ ์–‘๋ณ€์— $u(t)$๋ฅผ ๋‚˜๋ˆ„๊ณ  ์ ๋ถ„ํ•˜๋ฉด

\[\ln (u(t)) = \int \beta(t) + C\]

๊ฐ€ ๋˜๊ณ , ์—ฌ๊ธฐ์— ์ง€์ˆ˜ํ•จ์ˆ˜ $\ln$์„ ์šฐ๋ณ€์œผ๋กœ ๋„˜๊ฒจ์ฃผ๋ฉด

\[u(t) = u(0) \exp \left( \int_0^t \beta(s) \, ds \right)\]

๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. Gronwall์€ ์œ„์˜ ๋“ฑ์‹์ด ๋ถ€๋“ฑ์‹์ด ๋˜์–ด๋„ ์„ฑ๋ฆฝํ•œ๋‹ค๊ณ  ๋งํ•ฉ๋‹ˆ๋‹ค!!

$u(t)$ and $\beta(t)$ are real-valued continuous functions. If $uโ€™(t)$ is differentiable and satisfies the below inequality

\[u'(t) \le \beta(t) u(t)\]

then, $u(t)$ is bounded by the solution of the corresponding differential equation $vโ€™(t) = \beta(t) v(t)$:

\[u(t) \le u(0) \exp \left( \int_0^t \beta(s) \, ds \right)\]

* Remark: thereโ€™s no assumption on the sign of $u(t)$ ans $\beta(t)$.

์ง€๊ธˆ๊นŒ์ง€ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์„ ํ•˜๋ฉด์„œ, ๋ถ€๋“ฑ์‹์— ๋Œ€ํ•ด์„œ๋Š” ๊ฑฐ์˜ ๋‹ค๋ฃฌ๋ฐ”๊ฐ€ ์—†์—ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ, Gronwall ๋ถ€๋“ฑ์‹์€ ์ง€๊ธˆ๊นŒ์ง€ ๋ฐฐ์šด ๋ฏธ๋ถ„๋ฐฉ์ •์‹์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ถ€๋“ฑ์‹์œผ๋กœ ๋ฐ”๊พธ๋ฉด ๋˜๋Š” ๋‹จ์ˆœํ•œ ๋„๊ตฌ์ง€๋งŒ, ๋ฏธ๋ถ„๋ฐฉ์ •์‹์˜ ๋‹ค์–‘ํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Proof

์ฃผ์–ด์ง„ ๋ถ€๋“ฑ์‹์„ ๋“ฑ์‹์œผ๋กœ ๋งŒ์กฑํ•˜๋Š” ์—ฐ์† ํ•จ์ˆ˜ $v(t)$๊ฐ€ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ž. ๊ทธ๋ฆฌ๊ณ  ํ•จ์ˆ˜ $v(t)$์˜ ์ดˆ๊ธฐ๊ฐ’ $v(0) = 1$์ด๋‹ค.

\[v(t) = \exp \left( \int_0^t \beta(s) \, ds \right)\]

์ด ํ•จ์ˆ˜๋ฅผ $u(t)$ ํ•จ์ˆ˜์— ๋‚˜๋ˆˆ $u(t) / v(t)$๋ฅผ ๋ฏธ๋ถ„ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์‚ดํŽด๋ณด๋ฉด

\[\left(\frac{u(t)}{v(t)}\right)' = \frac{u'(t) v(t) - u(t) v'(t)}{(v(t))^2} = \frac{u'(t) v(t) - u(t) \beta(t) v(t)}{(v(t))^2}\]

์œ„์˜ ์‹์—์„œ $uโ€™(t) \le \beta(t) u(t)$๋ผ๋Š” ๋ถ€๋“ฑ์‹์„ ์ ์šฉํ•˜๋ฉด

\[\frac{u'(t) v(t) - u(t) \beta(t) v(t)}{(v(t))^2} \le \frac{\beta(t) u(t) v(t) - u(t) \beta(t) v(t)}{(v(t))^2} = 0\]

์ฆ‰, ์•„๋ž˜์˜ ๋ถ€๋“ฑ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[\left(\frac{u(t)}{v(t)}\right)' \le 0\]

์ด๊ฒƒ์€ $u(t) / v(t)$๊ฐ€ non-positive ํ•จ์ˆ˜์ด๊ณ , ์ดˆ๊ธฐ๊ฐ’ $u(0) / v(0)$์— bounded ๋˜์–ด ์žˆ์Œ์„ ๋งํ•œ๋‹ค. ๋”ฐ๋ผ์„œ,

\[\frac{u(t)}{v(t)} \le \frac{u(0)}{v(0) = 1} = u(0)\]

์œ„์˜ ๋ถ€๋“ฑ์‹์—์„œ $v(t)$๋ฅผ ์–‘๋ณ€์— ๊ณฑํ•˜๋ฉด, Gronwall ๋ถ€๋“ฑ์‹์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค.

Integral Form

์ฒ˜์Œ์—” ์ ๋ถ„ํผ๋ถ€ํ„ฐ ๋ดค๋Š”๋ฐ, ๊ฐœ์ธ์ ์œผ๋กœ ๋ฏธ๋ถ„ํผ๋ถ€ํ„ฐ ๋ด์•ผ ์ •๋ฆฌ๊ฐ€ ์ดํ•ด ๋˜๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ผ๋‹จ ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ํ˜•ํƒœ๋ถ€ํ„ฐ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

Simplest

Let $u(t)$ be real-valued continuous functions. And if $u(t)$ satisfies the below inequality

\[u(t) \le C + \int_0^t K \, u(s) \, ds\]

then,

\[u(t) \le C e^{Kt}\]

์‚ฌ์‹ค ๋ฏธ๋ถ„ํผ์ด๋ž‘ ๋˜๊ฒŒ ํ˜•ํƒœ๊ฐ€ ๋น„์Šทํ•œ๋ฐ, ์ฒ˜์Œ์— ์ฃผ์–ด์ง„ ๋ถ€๋“ฑ์‹์„ ๋ฏธ๋ถ„ํ•˜๋ฉด, $uโ€™(t) \le k u(t)$๊ฐ€ ๋‚˜์˜ค๊ณ , ์š”๊ฑธ ์ž˜ ์ ๋ถ„ํ•˜๋ฉด $u(t) \le u(0) e^{kt}$๊ฐ€ ๋‚˜์˜ค๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋ฌผ๋ก  ์ด๊ฑด ์—„๋ฐ€ํ•œ ์ฆ๋ช…์€ ์•„๋‹ˆ๊ณ  ์ง๊ด€์ ์œผ๋กœ ๋ณด๋ฉด ๊ทธ๋ ‡๋‹ค~~~

[case 1: $C > 0$]

๋ถ€๋“ฑ์‹์˜ ์šฐ๋ณ€๊ณผ ๊ฐ™์€ ํ•จ์ˆ˜ $v(t)$๊ฐ€ ์กด์žฌํ•œ๋‹ค๊ณ  ํ•˜์ž. ๊ทธ๋Ÿฌ๋ฉด

\[u(t) \le v(t) = C + \int_0^t K u(s) \, ds\]

$v(t)$๋ฅผ ๋ฏธ๋ถ„ํ•˜๋ฉด

\[v'(t) = k u(t)\]

์ด์ œ ์œ„์˜ ์‹์— ์–‘๋ณ€์„ $v(t)$๋กœ ๋‚˜๋ˆ„๋ฉด

\[\frac{v'(t)}{v(t)} = \frac{k u(t)}{v(t)}\]

๊ฐ€ ๋˜๋Š”๋ฐ, $u(t) \le v(t)$์˜ ๊ด€๊ณ„๋กœ ์ธํ•ด $u(t) / v(t) \le 1$์ด๋‹ค. ๋”ฐ๋ผ์„œ

\[\frac{v'(t)}{v(t)} = \frac{k u(t)}{v(t)} \le K\]

์–‘๋ณ€์„ ์ ๋ถ„ํ•˜๋ฉด,

\[\begin{aligned} \ln (v(t)) &\le \ln v(0) + Kt \\ \ln (v(t)) &\le \ln C + Kt \\ v(t) &\le C \cdot e^{Kt} \end{aligned}\]

์ด๋•Œ, $u(t) \le v(t)$์ด๋ฏ€๋กœ

\[u(t) \le v(t) \le C \cdot e^{Kt}\]

A bit general

Let $\alpha(t), \beta(t), u(t)$ be real-valued continuous functions, and $\alpha(t)$ is non-decreasing. And if $u(t)$ satisfies the below inequality

\[u(t) \le \alpha(t) + \int_0^t \beta(s) u(s) \, ds\]

then,

\[u(t) \le \alpha(t) \exp \left( \int_0^t \beta(s) \, ds \right)\]

References