1 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ํ•™๋ถ€ ์กธ์—…์‹œํ—˜์— ๋ฏธ๋ถ„๋ฐฉ์ •์‹์ด ์žˆ๋Š” ์ค„ ์•Œ๊ณ , ์‹œํ—˜ ์ค€๋น„๋„ ํ•  ๊ฒธ ๋ณตํ•™ํ•  ๋•Œ โ€œ์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹โ€ ๊ณผ๋ชฉ์„ ์‹ ์ฒญํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‚˜์ค‘์— ์•Œ๊ณ ๋ณด๋‹ˆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฒƒ ํฌ๊ธฐ๋ž€ ์—†์Šต๋‹ˆ๋‹ค!! ๐Ÿ’ช ์œผ๋ž์ฐจ!! ์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

Stable

Fixed Point๊ฐ€ Stable ์ง€์ ์ธ์ง€ Unstable ์ง€์ ์ธ์ง€ ์ˆ˜ํ•™์ ์œผ๋กœ ์ •์˜ ํ•ด๋ณด๋Š” ํŒŒํŠธ์ž…๋‹ˆ๋‹ค.

$X^{\ast}$ is a stable fixed point if for every neighborhood $O \subset \mathbf{R}^n$ of $X^{\ast}$,

there exist neighborhood $O_1 \subset O$ s.t. the solution $X(t)$ with $X(0) = X_0 \in O_1$ is defined and remains in $O$ for all $t > 0$.

Asymptotically Stable

Stable ์„ฑ์งˆ์„ ๋งŒ์กฑํ•˜๋ฉด์„œ, Solution Curve $X(t)$๊ฐ€

\[\lim_{t\rightarrow \infty} X(t) = X^{\ast}\]

๋ฅผ ๋งŒ์กฑํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ ๋งํ•œ๋‹ค.

Visualizations

Stable vs. Asymptotically Stable

https://logancollinsblog.com/2018/01/27/notes-on-dynamical-systems/

์š” ๋ธ”๋กœ๊ทธ์— ์žˆ๋Š” ํ”Œ๋กฏ์ด ๋‘ ๊ฐœ๋…์„ ๋น„๊ตํ•˜๋Š”๋ฐ, ๋„์›€์ด ๋˜์—ˆ๋‹ค.

Center์˜ ๊ฒฝ์šฐ๋Š” Fixed point ์ฃผ๋ณ€์„ Solution Curve๊ฐ€ ๋Œ๊ธฐ๋งŒ ํ•  ๋ฟ ์ˆ˜๋ ดํ•˜์ง€๋Š” ์•Š๋Š”๋‹ค. ๋ฐ˜๋ฉด์— Stable Node ๊ฒฝ์šฐ์™€ Stable Spiral ๊ฒฝ์šฐ๋Š” Fixed point๋กœ Solution Curve๊ฐ€ ์ˆ˜๋ ดํ•œ๋‹ค!

Kind of Fixed Points

Fixed Points.gif
By Jacopo Bertolotti - https://twitter.com/j_bertolotti/status/1634148351296806914, CC0, Link

Theorem

์ด์   ํ•˜๋„ ๋งŽ์ด ๋ด์„œ ๋‹น์—ฐํ•  ์ˆ˜๋„ ์žˆ์ง€๋งŒ, ์•„๋ž˜ ์ •๋ฆฌ๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.

If $n$-dimensional system $Xโ€™ = F(X)$ has an fixed point $X^{\ast}$ and the eigenvalues of the linearized system at $X^{\ast}$ have negative real part.

Then $X^{\ast}$ is asymptotically stable.