Non-linear System์—์„œ์˜ Stable Curve์˜ ์กด์žฌ์„ฑ๊ณผ ์„ฑ์งˆ์— ๋Œ€ํ•ด

19 minute read

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ํ•™๋ถ€ ์กธ์—…์‹œํ—˜์— ๋ฏธ๋ถ„๋ฐฉ์ •์‹์ด ์žˆ๋Š” ์ค„ ์•Œ๊ณ , ์‹œํ—˜ ์ค€๋น„๋„ ํ•  ๊ฒธ ๋ณตํ•™ํ•  ๋•Œ โ€œ์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹โ€ ๊ณผ๋ชฉ์„ ์‹ ์ฒญํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‚˜์ค‘์— ์•Œ๊ณ ๋ณด๋‹ˆ ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ์—ˆ์Šต๋‹ˆ๋‹คโ€ฆ OTLโ€ฆ ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฒƒ ํฌ๊ธฐ๋ž€ ์—†์Šต๋‹ˆ๋‹ค!! ๐Ÿ’ช ์œผ๋ž์ฐจ!! ์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ

Non-linear Saddles

์š”๋Ÿฐ Non-linear System์— ๋Œ€ํ•ด ์‚ดํŽด๋ณด์ž.

\[\begin{aligned} x' &= x + y^2 \\ y' &= -y \end{aligned}\]

Class Material

Phase Portrait๋งŒ ๋ณด์•˜์„ ๋•Œ๋Š” ์กฐ๊ธˆ ํœœ ๊ฒƒ๋งŒ ๋นผ๋ฉด $xโ€™ = x, yโ€™ = -y$์ธ Linear System๊ณผ ํฌ๊ฒŒ ๋‹ค๋ฅด์ง€ ์•Š๋‹ค.

https://homepages.bluffton.edu/

์กฐ๊ธˆ ํœœ ๊ฒƒ๋งŒ ๋นผ๋ฉด Linear System๊ณผ ํฌ๊ฒŒ ๋‹ค๋ฅด์ง€ ์•Š๋‹ค

์š”๊ฒŒ ์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ ๋‹ค๋ฃฐ โ€œThe Stable Curve Theoremโ€์˜ ํ•ต์‹ฌ ๋ฌธ์žฅ์ด๋‹ค! ๐Ÿ˜ผ

Linearized Saddles

์œ„์—์„œ ๋ดค๋˜ Non-linear Saddles์˜ ๊ฒฝ์šฐ์˜ ์ผ๋ฐ˜ํ™”๋œ ํ˜•์‹์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค.

\[\begin{aligned} x' &= \lambda x + f_1(x, y) \\ y' &= - \mu y + f_2(x, y) \end{aligned}\]

์ด๋•Œ, $-\mu < 0 < \lambda$๋ฅผ ๋งŒ์กฑํ•˜๊ณ , ์›์  $O$์— ์ ‘๊ทผํ•  ์ˆ˜๋ก $f_j(x, y)/r \rightarrow 0$๋กœ ์ˆ˜๋ ดํ•œ๋‹ค.

์œ„์˜ System์€ ์›์  $O$์—์„œ Equilibrium point๋ฅผ ๊ฐ–๋Š”๋ฐ, ์ด๋ฅผ โ€œsaddleโ€œ๋ผ๊ณ  ํ•œ๋‹ค. Linear System์—์„œ๋„ ๊ทธ๋ ‡๊ฒŒ ๋ถˆ๋ €๋‹ค! ๋‹ค๋งŒ, ์—ฌ๊ธฐ์„  ์ถ”๊ฐ€๋œ non-linear ํ…€ $f_1(x, y)$, $f_2(x, y)$์— ๋Œ€ํ•ด์„œ๋„ ์›์ ์œผ๋กœ ์ˆ˜๋ ดํ•œ๋‹ค๋Š” ์กฐ๊ฑด์ด ํ•„์š”ํ–ˆ๋‹ค.

https://homepages.bluffton.edu/

๋‹ค์‹œ ํ•œ๋ฒˆ ์ด ๊ทธ๋ฆผ์„ ๋ณด์ž. y์ถ•์ด stable line, x์ถ•์ด unstable line์ด์—ˆ๋‹ค. ๊ทธ๋Ÿฐ๋ฐ, ์š”๊ฑด Linearized System์ด๋‹ค. Non-linear System์—์„œ๋„ ์—ฌ์ „ํžˆ y์ถ•์ด stable line, x์ถ•์ด unstable line์ด๋ผ๋Š” ๊ฒƒ์€ ์ ˆ๋Œ€ ๋ณด์žฅํ•˜์ง€ ์•Š๋Š”๋‹ค.

๊ทธ๋Ÿฌ๋‚˜, Non-linear System์—์„œ๋„ ๋ณด์กด๋˜๋Š” ์„ฑ์งˆ์ด ์žˆ๋Š”๋ฐ: Non-linear System์—์„œ๋„ Stable๊ณผ Unstable ์„ฑ์งˆ์„ ๊ฐ–๋Š” ๋‘ ๊ณก์„ (curve)์ด ์กด์žฌํ•œ๋‹ค!

Stable Curve, and Unstable Curve

ํ‘œ๊ธฐ๋ฅผ ํ•˜๋‚˜ ์ •ํ•˜๊ณ  ๋…ผ์˜๋ฅผ ์ด์–ด๊ฐ€์ž. ๊ทธ๋ ‡๊ฒŒ ์–ด๋ ต์ง€ ์•Š์„ ๊ฒƒ์ด๋‹ค ใ…Žใ…Ž

๋จผ์ € ์‹œ๊ฐ„์ด ํ๋ฅผ์ˆ˜๋ก ์›์  $O$๋กœ ํ–ฅํ•ด ๊ฐ€๋ ค๋Š” ์ดˆ๊ธฐ๊ฐ’์„ ๋ชจ์€ ๊ณก์„ ์„ $W^s(0)$๋ผ๊ณ  ์ •์˜ํ•˜์ž. ์ด ๊ณก์„ ์„ โ€œstable curveโ€๋ผ๊ณ  ํ•œ๋‹ค.

๋ฐ˜๋Œ€๋กœ ์‹œ๊ฐ„์ด ํ๋ฅผ์ˆ˜๋ก ์›์  $O$์—์„œ ๋ฉ€์–ด์ง€๋ ค๋Š” ์ดˆ๊ธฐ๊ฐ’์„ ๋ชจ์€ ๊ณก์„ ์„ $W^u(0)$๋ผ๊ณ  ์ •์˜ํ•˜์ž. ์ด ๊ณก์„ ์„ โ€œunstable curveโ€๋ผ๊ณ  ํ•œ๋‹ค.

Class Material

๋งจ ์ฒ˜์Œ์— ๋ดค๋˜ Non-linear System์˜ Phase Portrait์ด๋‹ค. ์—ฌ๊ธฐ์—์„œ ์ฃผ๋ชฉํ•  ๋ถ€๋ถ„์ด ์žˆ๋Š”๋ฐ, ๋ฐ”๋กœ ์›์ ์„ ์ง€๋‚˜๋ฉด์„œ y์ถ•์— Tangentํ•œ ๊ณก์„ ์ด๋‹ค!! ์ด ๊ณก์„ ์ด Linearized System์—์„œ y์ถ•์ด์—ˆ๋˜ ์ง์„ ์ด๋‹ค. Non-linear System์ด ๋˜๋ฉด์„œ ์ด๊ฒŒ ์ง์„ ์—์„œ ๊ณก์„ ์œผ๋กœ ๋ณ€ํ•œ ๊ฒƒ!!

์—ฌ๊ธฐ์—์„œ ๋ณธ โ€œ์›์ ์— ์ ‘ํ•˜๋Š” Sink ๊ณก์„ โ€, ์ด๊ฑธ ์ž˜ ๊ธฐ์–ตํ•˜๋ฉฐ ์•„๋ž˜์˜ ์ •๋ฆฌ๋ฅผ ์ฝ์–ด๋ณด์ž.

The Stable Curve Theorem

Supp. the system

\[\begin{aligned} x' &= \lambda x + f_1(x, y) \\ y' &= - \mu y + f_2(x, y) \end{aligned}\]

satisfies $-\mu < 0 < \lambda$ and $f_j(x, y)/r \rightarrow 0$.

Then there exist an $\epsilon > 0$ and a curve $x = h^s(y)$ that is defined by $| y | < \epsilon$ s.t.

  1. $h^s(0) = 0$
  2. all solution starting on the curve remains on the curve for $t \ge 0$ and tend to the origin as $t \rightarrow \infty$.
  3. the curve $x = h^s(y)$ passes through the origin tangent to the $y$-axis.
  4. all other solutions starting in $B_\epsilon (0)$ leave the disk as time increases.

์ •๋ฆฌ์˜ ๋‚ด์šฉ๋งŒ ๋ด์„œ๋Š” ์ข€ ์ดํ•ดํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ๊ทธ๋ž˜์„œ ๊ทธ๋ฆผ์œผ๋กœ ์ดํ•ดํ•ด๋ณด๋ฉด

Class Material

์œ„์˜ ๊ทธ๋ฆผ์—์„œ ์›์ ์— ๋‹ค๊ฐ€๊ฐ€๋Š” ํ•œ ๊ณก์„ (curve)๊ฐ€ ์กด์žฌํ•œ๋‹ค. ์ด ๊ณก์„ ์ด stable curve $x = h^s(y)$์ด๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ๊ณก์„ ์€ y์ถ•์— tangent ํ•˜๋‹ค. $x = h^s(y)$๋ผ๊ณ  ํ‘œํ˜„ํ•œ ์ด์œ ๋Š” ๊ณก์„ ์ด $y$์— ๋Œ€ํ•œ $x$์˜ ํ•จ์ˆ˜ ๊ผด๋กœ ํ‘œํ˜„๋˜๊ธฐ ๋•Œ๋ฌธ!

๊ทธ๋ฆฌ๊ณ  ์ด stable curve $x = h^s(y)$๊ฐ€ ์•„๋‹Œ ์ฃผ๋ณ€์˜ ๋ชจ๋“  solution curve๋“ค์€ ์‹œ๊ฐ„์ด ์ง€๋‚ ์ˆ˜๋ก ์›์  ์ธ๊ทผ $B_\epsilon(0)$์—์„œ ๋ฉ€์–ด์ง„๋‹ค.

์‚ฌ์‹ค ์œ„์˜ ์ •๋ฆฌ์—์„œ ๋‚˜์˜จ $x = h^s(y)$๋Š” ๊ตญ์†Œ ๋ฒ”์œ„ $B_{\epsilon}(0)$ ๋‚ด์—์„œ ์ •์˜๋œ ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ด๊ฒƒ์„ โ€œlocal stable curveโ€๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์„ ํ™•์žฅํ•˜์—ฌ ์‹œ์Šคํ…œ์˜ ์ „์ฒด ์ƒํƒœ ๊ณต๊ฐ„์—์„œ์˜ Stable Curve๋กœ ๋™์ž‘ํ•˜๋Š” ๊ฒƒ์„ โ€œcomplete stable curveโ€ $W^s(0)$๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

Proof: Brief Sketch

๊ฒฝ๊ณ„์„ ์ด $|x| = \epsilon$, $|y | = \epsilon$์ธ ์ž‘์€ ์‚ฌ๊ฐ ์˜์—ญ ์œ„์—์„œ ์ดˆ๊ธฐ ์กฐ๊ฑด์œผ๋กœ ์‹œ์ž‘ํ•˜๋Š” ํ•ด๋“ค์„ ์‚ดํŽด๋ณด์ž. ์ด๋•Œ, $\epsilon > 0$์ด ์ถฉ๋ถ„ํžˆ ์ž‘์€ ์˜์—ญ์ด๋ฏ€๋กœ System์€ ์›์  ๊ทผ์ฒ˜์—์„œ Linear System์ธ $xโ€™ = \lambda x, yโ€™ = - \mu y$๊ณผ ๋น„์Šทํ•˜๊ฒŒ ํ–‰๋™ํ•ฉ๋‹ˆ๋‹ค.

์‚ฌ๊ฐํ˜•์˜ Top/Bottom ๊ฒฝ๊ณ„์ธ $y = \pm \epsilon$์—์„œ๋Š” ๋ฒกํ„ฐ ํ•„๋“œ๊ฐ€ ์‚ฌ๊ฐํ˜• ๋‚ด๋ถ€๋ฅผ ํ–ฅํ•ฉ๋‹ˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ Left/Right ๊ฒฝ๊ณ„์ธ $x = \pm \epsilon$์—์„œ๋Š” ๋ฒกํ„ฐ ํ•„๋“œ๊ฐ€ ์‚ฌ๊ฐํ˜• ์™ธ๋ถ€๋ฅผ ํ–ฅํ•ฉ๋‹ˆ๋‹ค.

์‚ฌ๊ฐํ˜• Top ๊ฒฝ๊ณ„ $y = \epsilon$์—์„œ ์ดˆ๊ธฐ ์กฐ๊ฑด์„ ์ƒ๊ฐํ•ด๋ด…์‹œ๋‹ค. ์ผ๋ถ€ ํ•ด๋Š” ์™ผ์ชฝ ๊ฒฝ๊ณ„๋ฅผ ํ†ตํ•ด ์‚ฌ๊ฐํ˜•์„ ๋– ๋‚  ๊ฒƒ์ด๊ณ , ์ผ๋ถ€ ํ•ด๋Š” ์˜ค๋ฅธ์ชฝ ๊ฒฝ๊ณ„๋ฅผ ํ†ตํ•ด ์‚ฌ๊ฐํ˜•์„ ๋– ๋‚  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ํ•˜๋‚˜ ํ™•์‹คํ•œ ๊ฒƒ์€ ํ•ด๊ฐ€ ์™ผ์ชฝ๊ณผ ์˜ค๋ฅธ์ชฝ ๊ฒฝ๊ณ„๋ฅผ ๋™์‹œ์— ๋– ๋‚  ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ Solution Curve๊ฐ€ ์—ฐ์†์ ์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.

๋”ฐ๋ผ์„œ, $y = \epsilon$ ์œ„์˜ ์ดˆ๊ธฐ ์กฐ๊ฑด ์ค‘ ์™ผ์ชฝ์œผ๋กœ ๋– ๋‚˜๋Š” ํ•ด์™€ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ๋– ๋‚˜๋Š” ํ•ด ์‚ฌ์ด์—๋Š” ์‚ฌ๊ฐํ˜•์„ ๋– ์ง€ ์•Š๋Š” ํ•ด๊ฐ€ ๋ฐ˜๋“œ์‹œ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฆฌ๋Š” ์—ฐ์† ํ•จ์ˆ˜๊ฐ€ ๋‘ ์ ์—์„œ ์ƒ๋ฐ˜๋œ ๋ถ€ํ˜ธ(Left vs. Right)๋ฅผ ๊ฐ€์ง€๋ฉด, ๊ทธ ์‚ฌ์ด์— 0์„ ๊ฐ–๋Š” ์ ์ด ๋ฐ˜๋“œ์‹œ ์กด์žฌํ•œ๋‹ค๋Š” โ€œ์ค‘๊ฐ„๊ฐ’ ์ •๋ฆฌโ€์˜ ๋…ผ๋ฆฌ์™€ ์œ ์‚ฌํ•ฉ๋‹ˆ๋‹ค.

์‚ฌ๊ฐํ˜•์„ ๋– ๋‚˜์ง€ ์•Š๋Š” ์ดˆ๊ธฐ ์กฐ๊ฑด์€ ์•„๋ž˜์˜ ์„ฑ์งˆ์„ ๊ฐ€์งˆ ๊ฒƒ ์ž…๋‹ˆ๋‹ค.

๊ฒฝ๊ณ„์˜ ๋ฒกํ„ฐ ํ•„๋“œ๊ฐ€ ๋‚ด๋ถ€๋ฅผ ํ–ฅํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์ด ํ•ด๋Š” ์‚ฌ๊ฐํ˜• ๋‚ด๋ถ€์—์„œ๋งŒ ๊ฑฐ๋™ ํ•œ๋‹ค ์‚ฌ๊ฐํ˜• ๋ฐ–์œผ๋กœ ๋‚˜๊ฐ€์ง€ ์•Š๊ณ , Stable Curve์˜ ๊ถค์ ์„ ๋”ฐ๋ผ ์›์ ์œผ๋กœ ์ˆ˜๋ ดํ•œ๋‹ค

๊ทธ๋ฆฌ๊ณ  ์ด๋•Œ์˜ Stable Curve๊ฐ€ $x = h^s(y)$๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.

Proof: Lemma 1

์œ„์˜ ์…‹์—…์„ ์กฐ๊ธˆ๋” ๋ช…ํ™•ํžˆ ํ•ด๋ณด์ž. $B_\epsilon$์€ $x = \pm \epsilon$, $y = \pm \epsilon$์œผ๋กœ ๋‘˜๋Ÿฌ์‹ธ์ธ ์‚ฌ๊ฐํ˜• ์˜์—ญ์ด๋‹ค. ๊ทธ๋ฆฌ๊ณ  $B_{\epsilon}$์˜ $S_{\epsilon}^{\pm}$์€ ๊ฐ๊ฐ Top/Bottom ๊ฒฝ๊ณ„๋ฅผ ๋งํ•œ๋‹ค.

์—ฌ๊ธฐ์— ์ถ”๊ฐ€๋กœ $C_M$๋ผ๋Š” ์‚ผ๊ฐ๋ฟ” ๋ชจ์–‘์˜ ์˜์—ญ์„ ์ถ”๊ฐ€๋กœ ์ •์˜ํ•œ๋‹ค. ์ด๊ฒƒ์€ $B_{\epsilon}$ ๋‚ด๋ถ€์— $|y|\ge M|x|$๋กœ ๋‘˜๋Ÿฌ์‹ธ์ธ ์˜์—ญ์ด๋‹ค.

์ฒ˜์Œ์—๋Š” ์š”๋Ÿฐ ์…‹์—…์ด ์ž˜ ์™€๋‹ฟ์ง€ ์•Š์•˜๋‹ค. ๊ทธ๋Ÿฐ๋ฐ, ์ฐจ๋ถ„ํžˆ ์ฆ๋ช…๋“ค์„ ๋”ฐ๋ผ๊ฐ€๋ณด๋‹ˆ ๊ทธ๋ƒฅ Parameter๊ฐ€ $\epsilon$๊ณผ $M$ 2๊ฐœ์ธ ์ƒํ™ฉ์ด๋ผ๊ณ  ๋ฐ›์•„๋“ค์ธ ๊ฒƒ ๊ฐ™๋‹ค. (Dynamical System์—์„œ๋Š” ์ด๋Ÿฐ ์ƒํ™ฉ์ด ๊ฝค ๋งŽ๋‹ค.)

์ด์ œ ์š” ์ƒํ™ฉ์—์„œ ์•„๋ž˜์˜ Lemma๊ฐ€ ์„ฑ๋ฆฝํ•˜๋Š”์ง€ ํ™•์ธํ•ด๋ณด์ž.

[Lemma 1]

Given $M>0$, there exists $\epsilon > 0$ s.t. the vector field points outside $C_M$ for points on the boundary of $C_M \cap B_\epsilon$. Of course except at the origin.

[Setup]

Non-linear System์— ์žˆ๋˜ ์š” ๋ฏธ๋ถ„๋ฐฉ์ •์‹์„ ์‚ดํŽด๋ด…์‹œ๋‹ค.

\[x' = \lambda x + f_1(x, y)\]

์šฐ๋ฆฌ๋Š” $B_\epsilon$ ๋‚ด์—์„œ ์„ ํ˜• ์‹œ์Šคํ…œ์œผ๋กœ ๊ฑฐ๋™ํ•˜๊ธธ ๋ฐ”๋ผ๊ธฐ ๋•Œ๋ฌธ์—, ๋น„์„ ํ˜• ํ…€์ธ $f_1(x, y)$์˜ ํšจ๊ณผ๊ฐ€ ๋ฏธ๋ฏธํ•  ์ •๋„์ด๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค.

๋”ฐ๋ผ์„œ, $\epsilon > 0$์„ ์ ์ ˆํžˆ ์„ ํƒํ•ด $f_1(x, y)$์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ€๋Šฅํ•œ ์ค„์—ฌ์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ž˜์•ผ ๋ฒกํ„ฐ ํ•„๋“œ๊ฐ€ $\lambda x$์— ์˜ํ•ด ๊ฒฐ์ •๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.


\[\| f_1(x, y) \| \le k r\]

๋กœ ์„ค์ •ํ•œ๋‹ค๋ฉด, $r \rightarrow 0$์ผ ๋•Œ, ๋น„์„ ํ˜• ํ…€์˜ ์˜ํ–ฅ์ด 0์œผ๋กœ ์ˆ˜๋ ดํ•จ์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋•Œ, $k$ ๊ฐ’์„ ์ ์ ˆํžˆ ์„ ํƒํ•ด์•ผ ํ•˜๋Š”๋ฐโ€ฆ

์›๋ฟ” $C_M$์˜ ๊ฒฝ๊ณ„์—์„œ๋Š” ์ ์ด $(x, Mx)$๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์„ ๊ฑฐ๋ฆฌ $r$๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[r = \sqrt{M^2 + 1} \| x \|\]

์œ„์˜ ์‹์„ ์ž˜ ์ •๋ฆฌํ•˜๋ฉด,

\[\begin{aligned} \| x \| &= \frac{r}{\sqrt{M^2 + 1}} \\ \lambda \| x \| &= \frac{\lambda}{\sqrt{M^2 + 1}} r \end{aligned}\]

์ด ๋ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” $| f_1(x, y) | \ll \lambda x$๋ฅผ ๋งŒ์กฑํ•˜๊ธธ ๋ฐ”๋ผ๋ฏ€๋กœ ์œ„์˜ ์‹์„ ์กฐํ•ฉํ•˜๋ฉดโ€ฆ

\[\| f_1(x, y) \| \le \frac{\lambda}{\sqrt{M^2 + 1}} r\]

๊ฐ€ ๋˜๋„๋ก ํ•œ๋‹ค. ์ด๋•Œ, ์•ˆ์ •์„ฑ์„ ์ข€๋” ์—ฌ์œ ๋กญ๊ฒŒ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด์„œ, ์ƒํ•œ์„ ์ ˆ๋ฐ˜์œผ๋กœ ๋” ์ขํ˜€์ค€๋‹ˆ๋‹ค.

\[\| f_1(x, y) \| \le \frac{\lambda}{2 \sqrt{M^2 + 1}} r\]

์ด ๋ถ€๋“ฑ์‹์ด $(x, y) \in B_{\epsilon}$ ๋‚ด์˜ ๋ชจ๋“  ์ ์— ๋Œ€ํ•ด์„œ ์„ฑ๋ฆฝํ•˜๋„๋ก $\epsilon$์„ ์žก์Šต๋‹ˆ๋‹ค.


$ x > 0$์ธ Cone $C_M$์˜ ์˜ค๋ฅธ์ชฝ ๊ฒฝ๊ณ„์— ๋Œ€ํ•ด ๋ฒกํ„ฐ ํ•„๋“œ์˜ ๊ฑฐ๋™์ด ์–ด๋–ค์ง€ ์‚ดํŽด๋ณด์ž.

\[x' = \lambda x + f_1(x, Mx)\]

์š” ์‹์€ ์•„๋ž˜๋ฅผ ๋งŒ์กฑํ•œ๋‹ค.

\[\begin{aligned} x' &= \lambda x + f_1(x, Mx) \\ &\ge \lambda x - \| f_1(x, Mx) \| \end{aligned}\]

์œ„์˜ ๋ถ€๋“ฑ์‹์€ ๊ทธ๋ƒฅ ์ ˆ๋Œ“๊ฐ’์— ์˜ํ•ด ์ƒ๊ธฐ๋Š” ๋ถ€๋“ฑ์‹์ด๋ผ ์ž์—ฐ์Šค๋Ÿฝ๊ณ , ์ด์ œ [setup] ๋‹จ๊ณ„์—์„œ ์„ค์ •ํ•œ $ | f_1(x, Mx) |$์— ๋Œ€ํ•œ ์ƒํ•œ์„ ์ ์šฉํ•ด๋ณด๋ฉดโ€ฆ

\[\begin{aligned} x' &= \lambda x + f_1(x, Mx) \\ &\ge \lambda x - \| f_1(x, Mx) \| \\ &\ge \lambda x - \frac{\lambda}{2 \sqrt{M^2 + 1}} r \end{aligned}\]

๊ทธ๋ฆฌ๊ณ  Cone $C_M$์˜ ๊ฒฝ๊ณ„์—์„œ $r = \sqrt{M^2 + 1} | x |$์ด๋ฏ€๋กœ ์ด๊ฑธ ๋Œ€์ž…ํ•˜๋ฉดโ€ฆ

\[\begin{aligned} x' &= \lambda x + f_1(x, Mx) \\ &\ge \lambda x - \| f_1(x, Mx) \| \\ &\ge \lambda x - \frac{\lambda}{2 \sqrt{M^2 + 1}} r \\ &= \lambda x - \frac{\lambda}{2 \cancel{\sqrt{M^2 + 1}}} (x \cancel{\sqrt{M^2 + 1}}) \\ &= \lambda x - \frac{\lambda x}{2} = \frac{\lambda}{2} x > 0 \end{aligned}\]

์ฆ‰, Cone $C_M$์˜ ์˜ค๋ฅธ์ชฝ ๊ฒฝ๊ณ„์—์„œ๋Š” ๋ฒกํ„ฐ ํ•„๋“œ๊ฐ€ ์˜ค๋ฅธ์ชฝ ๋ฐฉํ–ฅ์ธ $xโ€™ > 0$์˜ ๊ฐ’์„ ๊ฐ–๋Š”๋‹ค.


[setup for $y$]

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๊ฐ™์€ ์„ธํŒ…์„ $y$์— ๋Œ€ํ•ด์„œ๋„ ์ˆ˜ํ–‰ํ•œ๋‹ค.

\[\| f_2(x, y) \| \le \frac{\mu}{2\sqrt{M^2 + 1}} r\]

๊ทธ๋ฆฌ๊ณ  $y > 0$์— ๋Œ€ํ•ด ๊ฐ™์€ ๊ณผ์ •์„ ์ˆ˜ํ–‰ํ•˜๋ฉด, $yโ€™ < 0$์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค.


์ด๊ฑธ ์ข…ํ•ฉํ•˜๋ฉด, ์ฒซ๋ฒˆ์งธ ์‚ฌ๋ถ„๋ฉด(quadrant)์—์„œ Cone์˜ ๊ฒฝ๊ณ„์—์„œ๋Š” ๋ฒกํ„ฐ ํ•„๋“œ๊ฐ€ ๋ฐ”๊นฅ ๋ฐฉํ–ฅ์œผ๋กœ ํ๋ฅธ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

๋‹ค๋ฅธ ์‚ฌ๋ถ„๋ฉด์— ๋Œ€ํ•ด์„œ๋„ ๋™์ผํ•œ ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•˜๋ฉด, ๋ฒกํ„ฐ ํ•„๋“œ๊ฐ€ $C_M$์˜ ๋ฐ”๊นฅ ๋ฐฉํ–ฅ์œผ๋กœ ํ๋ฅธ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. $\blacksquare$


[Lemma 1: re-view]

Given $M>0$, there exists $\epsilon > 0$ s.t. the vector field points outside $C_M$ for points on the boundary of $C_M \cap B_\epsilon$. Of course except at the origin.

Lemma์˜ ์ฆ๋ช… ๊ณผ์ •์—์„œ ์šฐ๋ฆฌ๋Š” $S^{\pm}_{\epsilon} \cap C_M$ ์œ„์˜ ์ ๋“ค์ด ์ดˆ๊ธฐ๊ฐ’์ผ ๋•Œ, ์–ด๋–ค ์ ๋“ค์€ ์˜ค๋ฅธ์ชฝ ๋ฐฉํ–ฅ์œผ๋กœ, ๊ทธ๋ฆฌ๊ณ  ์–ด๋–ค ์ ๋“ค์€ ์™ผ์ชฝ ๋ฐฉํ–ฅ์œผ๋กœ ๋‚˜๊ฐ„๋‹ค๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์ด ์ดˆ๊ธฐ๊ฐ’ ์ ๋“ค์„ ๋ชจ์•„์„œ ์ง‘ํ•ฉ์„ ๊ตฌ์„ฑํ•˜์ž. ๊ทธ๋Ÿฌ๋ฉด ์ด ์ง‘ํ•ฉ์€ Open Set์ด๊ณ 1, ์šฐ๋ฆฌ๋Š” ์ด Open set์ด โ€œSingle Open Intervalโ€œ์ž„์„ ๋‹ค์Œ Lemma์—์„œ ๋ณด์ผ ๊ฒƒ์ด๋‹ค.

Proof: Lemma 2

[Lemma 2]

Suppose $M > 1$. Then there exist an $\epsilon > 0$ s.t. $yโ€™ < 0$ in $C^{+}_M$ and $yโ€™ > 0$ in $C^{-}_M$.

* $C^{+}_M$์€ $C_M$์—์„œ x์ถ• ์œ„์˜ ๋ถ€๋ถ„์„, $C^{-}_M$์€ x์ถ• ์•„๋ž˜ ๋ถ€๋ถ„์„ ๋งํ•œ๋‹ค. ์ˆ˜์‹์œผ๋กœ ํ‘œํ˜„ ํ•˜๋ฉด ์š”๋ ‡๋‹ค: $C^{+}_M = C_M \cap \left\{ y > 0 \right\}$

$C^{+}_M$์—์„œ ์šฐ๋ฆฌ๋Š” $|Mx| \le y$์ด๋‹ค. ๋”ฐ๋ผ์„œ $C_M$ ์˜์—ญ ๋‚ด๋ถ€์— ์กด์žฌํ•˜๋Š” ํ•œ ์  $r = (x, y)$์— ๋Œ€ํ•ด์„œ ์•„๋ž˜ ๋ถ€๋“ฑ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[r^2 = x^2 + y^2 \le \frac{y^2}{M^2} + y^2\]

์‹์„ ์ •๋ฆฌํ•˜ $r$์— ๋Œ€ํ•œ ๋ถ€๋“ฑ์‹์œผ๋กœ ๋ฐ”๊พธ๋ฉด

\[r \le \frac{y}{M} \sqrt{1 + M^2}\]

์ด์ „์˜ Lemma 1์—์„œ ์šฐ๋ฆฌ๋Š” ์•„๋ž˜ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋„๋ก $\epsilon$์„ ์žก์•˜๋‹ค.

\[\| f_2(x, y) \| \le \frac{\mu}{2\sqrt{M^2 + 1}} r\]

์œ„์˜ ๋ถ€๋“ฑ์‹์„ ์กฐํ•ฉํ•˜๋ฉด, $C^{+}_M$ ์˜์—ญ์— ์กด์žฌํ•˜๋Š” ์ ๋“ค์— ๋Œ€ํ•ด ์•„๋ž˜๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.

\[\begin{aligned} y' &= -\mu y + f_2(x, y) \\ &\le -\mu y + \| f_2(x, y) \| \\ &\le -\mu y + \frac{\mu}{2\sqrt{M^2 + 1}} r \\ &\le -\mu y + \frac{\mu}{2\cancel{\sqrt{M^2 + 1}}} \frac{y \cancel{\sqrt{M^2 + 1}}}{M} \\ &\le \mu (-1 + \frac{1}{2M}) y \\ &\le - \frac{\mu}{2} y \end{aligned}\]

๋งจ ๋งˆ์ง€๋ง‰ ๋ถ€๋“ฑ์‹ $\le - \mu/2 \cdot y$๋Š” $M>1$์ด๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ๋ ‡๋‹ค.

๋งˆ์ฐฌ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์œผ๋กœ $C^{-}_M$์— ๋Œ€ํ•ด ์ˆ˜ํ–‰ํ•˜๋ฉด, $yโ€™ \ge 0$๋ผ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ๊ฒƒ์ด๋‹ค. $\blacksquare$


[Lemma 2: re-view]

Suppose $M > 1$. Then there exist an $\epsilon > 0$ s.t. $yโ€™ < 0$ in $C^{+}_M$ and $yโ€™ > 0$ in $C^{-}_M$.

* $C^{+}_M$์€ $C_M$์—์„œ x์ถ• ์œ„์˜ ๋ถ€๋ถ„์„, $C^{-}_M$์€ x์ถ• ์•„๋ž˜ ๋ถ€๋ถ„์„ ๋งํ•œ๋‹ค. ์ˆ˜์‹์œผ๋กœ ํ‘œํ˜„ ํ•˜๋ฉด ์š”๋ ‡๋‹ค: $C^{+}_M = C_M \cap \left\{ y > 0 \right\}$

์ด ๋ณด์กฐ์ •๋ฆฌ๊ฐ€ ๋ฌด์Šจ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค๋Š” ๊ฒƒ์ผ๊นŒ?

1. Solution Curve๊ฐ€ ์›์ ์„ ํ–ฅํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ๋ฉด, ์‹œ๊ฐ„์ด ์ง€๋‚  ์ˆ˜๋ก ์–ด๋–ค Solution Curve๋„ $C_M$ ๋‚ด์— ์กด์žฌํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.

์ด๊ฒƒ์€ $C_M$์ด Conic Section ์ด๊ธฐ ๋•Œ๋ฌธ์ธ๋ฐ, $C^{+}_M$์—์„œ๋Š” $yโ€™<0$์ด๊ณ , $C^{-}_M$์—์„œ๋Š” $yโ€™>0$์ด๊ธฐ ๋•Œ๋ฌธ์— ์–ธ์  ๊ฐ€๋Š” $C_M$์„ ๋ฒ—์–ด๋‚  ์ˆ˜ ๋ฐ–์— ์—†์Šต๋‹ˆ๋‹ค.

2. โ€œContinuously Dependence Theoremโ€์— ์˜ํ•ด $S^{+}_{\epsilon}$์—์„œ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ๋‚˜๊ฐ€๋Š” ์ ๋“ค๊ณผ ์™ผ์ชฝ์œผ๋กœ ๋‚˜๊ฐ€๋Š” ์ ๋“ค์˜ ์ง‘ํ•ฉ์€ ํ•ญ์ƒ single open interval์ผ ์ˆ˜ ๋ฐ–์— ์—†์Šต๋‹ˆ๋‹ค.

2๋ฒˆ ์„ฑ์งˆ์€ ์›์  $O$๊ฐ€ $\{ 0 \}$์ธ closed set์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.

Proof: Lemma 3

๋‹ค์Œ์œผ๋กœ ์ฃผ์ •ํ•  ๊ฒƒ์€ ์ดˆ๊ธฐ๊ฐ’๋“ค์ด ๋ชจ์—ฌ์žˆ๋Š” $S^{+}_\epsilon$์—์„œ ์›์  $O$๋ฅผ ํ–ฅํ•ด ํ•˜๋Š” ์ ์ด ๋‹จ ํ•˜๋‚˜ ์กด์žฌํ•œ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.

[Lemma 3]

The solution staring from $S^{+}_\epsilon$ tends to $O$ is a single point.

Sorry

์š” ๋ถ€๋ถ„์€ ์ฆ๋ช…์„ ์ฝ์–ด๋ด๋„ ๋„์ €ํžˆ ๋ชจ๋ฅด๊ฒ ์Šต๋‹ˆ๋‹ค ใ… ใ…  ์ขŒํ‘œ ๋ณ€ํ™˜์„ ๋ญ”๊ฐ€ ํ•˜๋Š”๋ฐ, ์ขŒํ‘œ ๋ณ€ํ™˜์„ ์™œ ๊ทธ๋ ‡๊ฒŒ ์žก๋Š”์ง€๋„ ์ „ํ˜€ ๋ชจ๋ฅด๊ฒ ์Šต๋‹ˆ๋‹คโ€ฆ ๊ต์ˆ˜๋‹˜๊ป˜ ์งˆ๋ฌธ์ด๋ผ๋„ ๋ณด๋‚ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค;;

High-dimensional Saddles

$Xโ€™ = F(X)$์ธ System์— $X_0$๊ฐ€ Fixed point๋กœ $F(X_0) = \mathbb{0}$๋ฅผ ๋งŒ์กฑํ•ฉ๋‹ˆ๋‹ค. ์ด๋•Œ, $k$๊ฐœ eigenvalues๋Š” negative real part๋ฅผ ๊ฐ€์ง€๊ณ , $n-k$ eigenvalues๋Š” positive real part๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค. negative real part๋Š” stable ์„ฑ์งˆ์„ ๊ฐ€์ง€๊ณ , positive real part๋Š” unstable ์„ฑ์งˆ์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

์˜ˆ์ œ๋ฅผ ํ†ตํ•ด ์ด ์„ฑ์งˆ์„ ์ข€๋” ์‚ดํŽด๋ด…์‹œ๋‹ค.

Consider the system

\[\begin{aligned} x' &= -x \\ y' &= -y \\ z' &= z + x^2 + y^2 \end{aligned}\]

์œ„์˜ ์‹œ์Šคํ…œ์€ $zโ€™ = z + x^2 + y^2$ ๋ถ€๋ถ„ ๋•Œ๋ฌธ์— Non-linear System ์ž…๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  Linearized System์—์„œ์˜ eigenvalue๋Š” -1, -1, 1๋กœ ๋‚˜์˜ค๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. Non-linear System ์ž์ฒด๋ฅผ $zx$, $yz$ ๋ณ€์ˆ˜๋งŒ ์กฐํ•ฉํ•ด์„œ ์‚ดํŽด๋ณด๋ฉด ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

์ด์ œ ์ด๊ฑธ ์•„๋ž˜์™€ ๊ฐ™์ด ์ขŒํ‘œ ๋ณ€ํ™˜์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฉด

\[\begin{aligned} u &= x \\ v &= y \\ w &= z + \frac{1}{3} (x^2 + y^2) \end{aligned}\]

์ด ์ขŒํ‘œ ๋ณ€ํ™˜์„ ์ ์šฉํ•˜๋ฉด, Non-linear System์ด Linear System์œผ๋กœ ๋ฐ”๋€๋‹ˆ๋‹ค.

\[\begin{aligned} u' &= -u \\ v' &= -v \\ w' &= w \end{aligned}\]

$wโ€™ = w$์— ๋Œ€ํ•œ ๋ถ€๋ถ„์€ ์‹ค์ œ๋กœ ์„ ํ˜• ์‹œ์Šคํ…œ์œผ๋กœ ์ž˜ ๋ณ€ํ™˜๋˜๋Š”์ง€ ์กฐ๊ธˆ์€ ๊ถ๊ธˆํ–ˆ๋Š”๋ฐ, ์ฐจ๋ถ„ํ•˜๊ฒŒ $wโ€™$์— ๋Œ€ํ•œ ์‹์„ ์ •๋ฆฌํ•˜๋ฉด ์ €๋ ‡๊ฒŒ ๋‚˜์˜ต๋‹ˆ๋‹ค!

๊ทธ๋Ÿฌ๋ฉด, $w = 0$์—์„œ Linear System์ด Stable Plane์„ ๊ทธ๋ฆฌ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ์ขŒํ‘œ๋ณ€ํ™˜ํ•œ ๊ฒƒ์„ ๋‹ค์‹œ ์—ญ๋ณ€ํ™˜ ํ•˜๋ฉด, ๊ทธ $w = 0$ plane์€ $xyz$ ๊ณต๊ฐ„์—์„œ ์š”๋Ÿฐ surface๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.

\[z = -\frac{1}{3}(x^2 + y^2)\]

์‹œ๊ฐํ™” ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

Class Material

๋งบ์Œ๋ง

์ƒ๋ฏธ๋ถ„๋ฐฉ์ •์‹ ์ˆ˜์—…์˜ ๋‚ด์šฉ์ด ๋ญ”๊ฐ€, ์ •๋ฆฌ ์ž์ฒด๋Š” ๋˜๊ฒŒ ์งง๊ณ , ์‹œ๊ฐ์ ์œผ๋กœ ์ง๊ด€์ ์ธ๋ฐ ์ฆ๋ช…์€ ๋‚ด์šฉ์ด ์—„์ฒญ ๊ธธ์–ด์ง€๋Š” ๊ฒƒ ๊ฐ™๋‹คโ€ฆ ๐Ÿ˜ตโ€๐Ÿ’ซ

์•”ํŠผ ๊ณง ์ข…๊ฐ•์ด๋‹ˆ ํ™”์ดํŒ…!!

  1. Continuously Dependence Theorem ๋•Œ๋ฌธ์ด๋ผ๊ณ  ํ•จ. ์ˆ˜์—… ๊ต์žฌ 7.3์˜ ๋‚ด์šฉ์ด๋ผ๊ณ  ํ•จ. (์‚ฌ์‹ค ์ € ์ฑ•ํ„ฐ ๋„ˆ๋ฌด ์–ด๋ ค์›Œ์„œ ์ดํ•ด ๋ชป ํ•จ ใ… ใ… )ย