๊ฒฝ์ œํ•™์—์„œ ๊ฐœ์ธ์˜ ์„ ํ˜ธ๋ฅผ ๋ชจ๋ธ๋ง ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด

4 minute read

What is preference

๊ฐœ์ธ(individual)์˜ ๊ฒฐ์ •์„ ๋ชจ๋ธ๋ง ํ•˜๋Š” ์ฒซ๊ฑธ์Œ.

์„ ํ˜ธ(Preference)๋Š” ์–ด๋–ค ๋Œ€์ƒ์— ๋Œ€ํ•ด ํ•œ ์‚ฌ๋žŒ์ด ๋งค๊ธฐ๋Š” ์ˆœ์œ„(ranking)์— ๋Œ€ํ•œ ๊ฒƒ์ž„.

๊ฒฝ์ œํ•™์—์„œ๋Š” ๊ฐœ์ธ์˜ ์„ ํ˜ธ๋ฅผ โ€œ์ดํ•ญ ๊ด€๊ณ„(binary relation)โ€์œผ๋กœ ํ‘œํ˜„ํ•จ.

  • $x \succeq y$ := prefer $x$ than $y$
  • $x \sim y$ := prefer $x$ and $y$ equally

$x \sim y$๋Š” ํ’€์–ด์„œ ์ž‘์„ฑํ•˜๋ฉด, $x \succeq y$ and $x \preceq y$์ธ ์ƒํ™ฉ์ž„. ์ด๊ฑธ ๋‘ ๋Œ€์ƒ์ด โ€œindifferenceโ€ํ•˜๋‹ค๊ณ  ํ•จ.

$x \succ y$๋Š” $x \succeq y$ but not $x \preceq y$์ธ ์ƒํ™ฉ์ž„. ์ด ์ƒํ™ฉ์€ โ€œstrict preferenceโ€๋ผ๊ณ  ํ•จ.

Binary Relation

์ „์ฒด ๋Œ€์ƒ์„ ๋ชจ์€ ์ง‘ํ•ฉ $X$์— ๋Œ€ํ•ด์„œ ๋ชจ๋“  $(x, y)$ ์Œ์— ๋Œ€ํ•ด ์ดํ•ญ ๊ด€๊ณ„(์„ ํ˜ธ)๊ฐ€ ์กด์žฌํ•ด์•ผ ํ•จ(completeness).

๊ทธ๋ฆฌ๊ณ  Complete Binary Relation์€ โ€œreflexiveโ€ ์„ฑ์งˆ์„ ๋งŒ์กฑํ•œ๋‹ค. ๋ชจ๋“  $x \in X$์— ๋Œ€ํ•ด ์ž๊ธฐ ์ž์‹ ๊ณผ์˜ ์ดํ•ญ ๊ด€๊ณ„๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค.

Binary Relation์ด $x R y$ and $y R z$ ์ผ ๋•Œ, $x R z$๋ฅผ ๋งŒ์กฑํ•˜๋ฉด, โ€œtransitiveโ€œ๋ผ๊ณ  ํ•œ๋‹ค.


์œ„์—์„œ ์ •์˜ํ•œ โ€œPreference relationโ€์€ complete์™€ transitive ์„ฑ์งˆ์„ ๋งŒ์กฑํ•ด์•ผ ํ•œ๋‹ค.


์ถ”๊ฐ€๋กœ โ€œsymmetricโ€ ์„ฑ์งˆ์€ $x R y$์ด๋ฉด, $y R x$์„ ๋งŒ์กฑํ•œ๋‹ค๋Š” ๊ฒƒ์ž„. indifference relation $\sim$์ด ์ด ์†์„ฑ์„ ๋งŒ์กฑํ•จ.

๊ทธ๋ฆฌ๊ณ  Binary relation์ด โ€œreflexiveโ€, โ€œsymmetricโ€, โ€œtransitiveโ€๋ฅผ ๋ชจ๋‘ ๋งŒ์กฑํ•˜๋ฉด, โ€œequivalence relationโ€œ๋ผ๊ณ  ๋ถ€๋ฆ„.

Value Function

๊ฐœ์ธ์ด ๋Œ€์ƒ์— ๊ฐ€์น˜๋ฅผ ๋งค๊ธฐ๋Š” ํ•จ์ˆ˜ $v$๋ฅผ ๋งํ•จ. ๊ทธ๋ž˜์„œ $x \succeq y$ ์„ ํ˜ธ ๊ด€๊ณ„๊ฐ€ ์„ฑ๋ฆฝํ•œ๋‹ค๋ฉด, $v(x) \succeq v(y)$๊ฐ€ ์„ฑ๋ฆฝํ•จ.

๋งŒ์•ฝ ํšŒ์‚ฌ์—์„œ ์ง‘์„ ๊ตฌํ•˜๋ ค๋Š”๋ฐ, ์‚ฌ๋žŒ๋“ค์€ ํ†ต๊ทผ ์‹œ๊ฐ„์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ํšŒ์‚ฌ์™€ ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ๊ทธ ์ง‘์„ ๋” ์„ ํ˜ธํ•œ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ฒฝ์šฐ, $d(x)$๋ผ๋Š” ๊ฑฐ๋ฆฌ ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•  ์ˆ˜ ์žˆ๊ณ , ์‚ฌ๋žŒ๋“ค์˜ ์„ ํ˜ธ๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ๋ชจ๋ธ๋ง ๋ฉ๋‹ˆ๋‹ค.

\[x \succeq y \iff d(x) \le d(y)\]

์ด ๊ฒฝ์šฐ, value function $v(x)$๋Š” $v(x) = - d(x)$๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.

Lexicographic preferences

์‚ฌ๋žŒ๋“ค์ด ์–ด๋–ค ์ƒํ’ˆ์„ ๊ณ ๋ฅผ ๋•Œ, ์—ฌ๋Ÿฌ ์†์„ฑ์„ ๋น„๊ตํ•˜์—ฌ ๊ตฌ๋งค๋ฅผ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋งŒ์•ฝ ๋งฅ๋ถ์„ ์‚ฐ๋‹ค๊ณ  ํ•˜๋ฉด CPU ์ฝ”์–ด ์ˆ˜์™€ Memory ์‚ฌ์ด์ฆˆ๋ฅผ ๋น„๊ตํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

โ€œLexicographic preferenceโ€๋Š” (1) ์ฒซ๋ฒˆ์งธ ์†์„ฑ์—์„œ ์šฐ์œ„๋ฅผ ๋ณด์ด๋ฉด ๊ทธ๊ฒƒ์„ ์„ ํƒํ•˜๊ณ , (2) ๋งŒ์•ฝ ์ฒซ๋ฒˆ์งธ ์†์„ฑ๊ฐ’์ด ๋™์ผํ•˜๋‹ค๋ฉด ๋‘๋ฒˆ์งธ ์†์„ฑ์„ ๋น„๊ตํ•˜์—ฌ ์šฐ์œ„๋ฅผ ๋ณด์ด๋Š” ๊ฑธ ์„ ํƒํ•˜๋Š” ์„ ํ˜ธ ์ž…๋‹ˆ๋‹ค.

์ด๊ฑธ ์ˆ˜์‹์œผ๋กœ ์ ์–ด๋ณธ๋‹ค๋ฉดโ€ฆ

2๊ฐ€์ง€ complete and transitive ์ดํ•ญ ๊ด€๊ณ„ $\succeq_1$๊ณผ $\succeq_2$๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•ฉ์‹œ๋‹ค. ์ด๋•Œ, ๋Œ€์ƒ์— ๋Œ€ํ•œ ์„ ํ˜ธ $\succeq$๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ๊ฒฐ์ • ๋ฉ๋‹ˆ๋‹ค.

  • $x \succeq y$, if $x \succeq_1 y$
  • $x \succeq y$, if $x \sim_1 y$ and $x \succeq_2 y$

completeํ•˜๊ณ  transitiveํ•œ 2๊ฐ€์ง€ ์ดํ•ญ ๊ด€๊ฒŒ๋ฅผ ํ™œ์šฉํ•ด ์ƒˆ๋กœ์šด ์ดํ•ญ ๊ด€๊ณ„๋ฅผ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ์ดํ•ญ ๊ด€๊ณ„๋„ complete์™€ transitive๋ฅผ ๋งŒ์กฑํ• ๊นŒ์š”?

Unanimity Rule

๋งŒ์žฅ์ผ์น˜(Unanimity) ๊ทœ์น™ ์ž…๋‹ˆ๋‹ค. ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์„ ํ˜ธ ๊ด€๊ณ„๋ฅผ ํ•˜๋‚˜์˜ ์ดํ•ญ ๊ด€๊ณ„๋กœ ํ†ตํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ• ์ž…๋‹ˆ๋‹ค.

์•„์ด๋””์–ด๋Š” $n$๊ฐœ์˜ ๊ณ ๋ ค ์š”์†Œ์— ๋Œ€ํ•ด ๋ชจ๋“  ์š”์†Œ์— ๋Œ€ํ•ด $x$๊ฐ€ $y$๋ณด๋‹ค ์„ ํ˜ธ๋˜๊ฑฐ๋‚˜ ์ ์–ด๋„ ๋™๋“ฑํ•˜๋‹ค๋ฉด, $x$๊ฐ€ $y$๋ณด๋‹ค ๋‚ซ๋‹ค๊ณ  ํŒ๋‹จํ•ฉ๋‹ˆ๋‹ค.

\[x \succeq y \quad \text{if} \quad x \succeq_i y \quad \text{for all } i = 1, 2, โ€ฆ, n.\]

์ด ๊ด€๊ณ„๋Š” Transitivity๋ฅผ ๋งŒ์กฑํ•˜์ง€๋งŒ, Completeness๋Š” ๋ณด์žฅํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ์ผ๋ถ€ ์Œ์— ๋Œ€ํ•ด์„œ๋Š” ๋งŒ์žฅ์ผ์น˜ ์„ ํ˜ธ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Majority Rule

๋‹ค์ˆ˜๊ฒฐ ๊ทœ์น™์€ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์„ ํ˜ธ ๊ด€๊ณ„๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ์ตœ์ข…์ ์ธ ์„ ํƒ์„ ๋‚ด๋ฆฌ๋Š” ๋ฐฉ๋ฒ• ์ž…๋‹ˆ๋‹ค. $n$๊ฐ€์ง€ ๊ธฐ์ค€์ด ์žˆ์„ ๋•Œ, ์ ˆ๋ฐ˜ ์ด์ƒ์˜ ์กฐ๊ฑด์— ๋Œ€ํ•ด ์„ ํ˜ธ๊ฐ€ ์„ฑ๋ฆฝํ•ด์•ผ $x$๋ฅผ $y$๋ณด๋‹ค ์„ ํ˜ธํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

์ด๋Ÿฐ ์„ ํ˜ธ๋Š” Completeness๋ฅผ ๋งŒ์กฑํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋“  $(x, y)$ ์Œ์— ๋Œ€ํ•œ ์„ ํ˜ธ๋ฅผ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Transitivity๋Š” ๋ณด์žฅ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.

Condorcet paradox

๋‹ค์ˆ˜๊ฒฐ ํˆฌํ‘œ๊ฐ€ ๋น„์ผ๊ด€์„ฑ์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ๋Š” ์‚ฌ๋ก€ ์ž…๋‹ˆ๋‹ค.

โ€ฆ