Utility Function
What is utilityPermalink
κ²½μ νμμλ κ°μΈμ μ νΈ(preference)λ₯Ό μ§μ λ€λ£¨κΈ° 보λ€λ κ°μΉ ν¨μ(value function)μ μ¬μ©ν΄ νννλ κ²½μ°κ° λ§μ΅λλ€.
κ·Έλ¬λ κ°μΉ ν¨μκ° μ νΈλ‘ κ·Έλλ‘ μ΄μ΄μ§μ§λ μμ΅λλ€. μλ₯Ό λ€μ΄, νμ¬λ‘λΆν° λ¨μ΄μ§ 거리
λ§μ½ μ΄λ€ κ°μΉν¨μκ° κ°μΈμ μ νΈλ₯Ό μ νν λνλΌ μ μλ€λ©΄, μ΄ κ°μΉ ν¨μλ₯Ό ν¨μ© ν¨μ(utility function)
DefinitionPermalink
For any set
the function
AlternativePermalink
Minimal AlternativePermalink
μ΄λ€ λμ
Maximal AlternativePermalink
μ΄λ€ λμ
Existence of minimal/maximal alternativesPermalink
Let
At least one member of
and at least one member is maximal.
ProofPermalink
TODO
PropositionsPermalink
Preference relation can be represented by a utility functionPermalink
Every preference relation on a finite set can be represented by a utility function.
μ ν μ§ν©
μ§ν©
μ΄ μ§ν©
μ΄μ μλ‘μ΄ μ§ν©
μ΄ κ³Όμ μ κ³μ λ°λ³΅νμ¬
μ§ν©
Preference relation not represented by a utility functionPermalink
The (lexicographic) preference relation is not represented by any utility function
TODO: proof
Increasing function of utility function is utility functionPermalink
Left
If
then so does the function
μ΄ λͺ μ μ μλ―Έλ ν¨μ© ν¨μμ κ° μ체λ μ λμ μΈ μλ―Έλ₯Ό κ°λ κ²μ΄ μλκ³ , μμλ§ μ€μν λΏμ΄λΌλ κ² μ λλ€. ν¨μ© ν¨μλ₯Ό μ€μΌμΌλ§ νλ μ΄λ¦¬μ 리 λ³νμ νλ , κ·Έ ν¨μκ° λ¨μ‘° μ¦κ°νλ ν¨μλΌλ©΄ μ νΈ μμκ° λ³΄μ‘΄ λ©λλ€.