7 minute read

์ˆ˜ํ•™๊ณผ ๋ณต์ˆ˜์ „๊ณต์„ ์œ„ํ•ด ์กธ์—… ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ์— โ€œ์ˆ˜์น˜ํ•ด์„๊ฐœ๋ก โ€ ์ˆ˜์—…์„ ๋“ฃ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜ํ•™๊ณผ ์กธ์—…์‹œํ—˜๋„ ๊ฒธ์‚ฌ๊ฒธ์‚ฌ ์ค€๋น„ํ•  ๊ฒธ ํ™”์ดํŒ… ํ•ด๋ด…์‹œ๋‹ค!! ์ „์ฒด ํฌ์ŠคํŠธ๋Š” โ€œNumerical Analysisโ€œ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋น„์„ ํ˜• ๋ฐฉ์ •์‹ $f(x) = 0$์˜ ๊ทผ์„ ์ฐพ๊ธฐ ์œ„ํ•œ ์ˆ˜์น˜์  ๋ฐฉ๋ฒ• ์ž…๋‹ˆ๋‹ค.

\[p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}\]

๋งค์šฐ ๋น ๋ฅธ ์ˆ˜๋ ด ์†๋„๋ฅผ ๋ณด์žฅํ•จ. Quadratic Converges ์ด๊ณ , ํ•œ๋ฒˆ ์ˆ˜ํ–‰ํ•  ๋•Œ๋งˆ๋‹ค ์ •ํ™•๋„๊ฐ€ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•จ.

๋‹จ์ ์€ ํ•จ์ˆ˜ $f(x)$๊ฐ€ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•ด์•ผ ํ•จ. ๋ฏธ๋ถ„์ด ์กด์žฌํ•˜์ง€ ์•Š๊ฑฐ๋‚˜ ๊ณ„์‚ฐ์ด ์–ด๋ ต๋‹ค๋ฉด ์‚ฌ์šฉํ•˜๊ธฐ ์–ด๋ ค์›€.

๋งŒ์•ฝ ํ•จ์ˆ˜์˜ ๋ฏธ๋ถ„๊ฐ’ $fโ€™(p_n) = 0$์ด๋ผ๋ฉด ๊ณผ์ •์„ ์ง€์†ํ•  ์ˆ˜ ์—†์Œ. ๊ทธ๋ž˜์„œ $fโ€™(x)$๊ฐ€ $r$ ๊ทผ์ฒ˜์—์„œ 0์ด ๋˜์ง€ ์•Š์•„์•ผ ํ•จ.

์ž˜๋ชป๋œ ์ดˆ๊ธฐ๊ฐ’์„ ์„ ํƒํ•˜๋ฉด ๋ฐœ์‚ฐํ•  ์ˆ˜ ์žˆ์Œ.

๋‹ค์ค‘๊ทผ(multiple roots) ๋ฌธ์ œ๊ฐ€ ์žˆ์Œ.

Local Convergence

Let $f \in C^2[a, b]$. If $r \in (a, b)$ is s.t. $f(r) = 0$ and $fโ€™(r) \ne 0$,

then there exists a $\delta > 0$ s.t. Newtonโ€™s method generates a sequence $\left\{ p_n \right\}_{n=1}^{\infty}$ that converges to $r$ for any initial approximation $p_0 \in [r-\delta, r+\delta]$.

proof

๋‰ดํ„ด ๋ฐฉ๋ฒ•์„ FPI์œผ๋กœ ํ•ด์„ํ•˜์—ฌ ์ฆ๋ช… ํ•ฉ๋‹ˆ๋‹ค!!

[Step 1] ํ•จ์ˆ˜ $g(x)$ ์ •์˜

Newtonโ€™s Method์˜ ๋ฐ˜๋ณต์‹์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)}\]

์ด๋ฅผ ํ•จ์ˆ˜ $g(x)$๋กœ ํ‘œํ˜„ํ•˜๋ฉด,

\[g(x) = x - \frac{f(x)}{f'(x)}\]

์ฆ‰, ๋‰ดํ„ด ๋ฐฉ๋ฒ•์€ FPI์—์„œ $p_{n+1} = g(p_n)$์˜ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.


[Step 2] ํ•จ์ˆ˜ $gโ€™(x)$ ๋ฏธ๋ถ„

\[\begin{aligned} g'(x) &= 1 - \frac{f'(x) \cdot f'(x) - f(x) f''(x)}{[f'(x)]^2} \\ &= 1 - 1 + \frac{f(x) f''(x)}{[f'(x)]^2} &= \frac{f(x) f''(x)}{[f'(x)]^2} \end{aligned}\]

์ฆ‰, $gโ€™(x)$๋Š” ํ•จ์ˆ˜ $f(x)$์™€ ๊ทธ ๋„ํ•จ์ˆ˜ $fโ€™(x)$, ์ด๊ณ„๋„ํ•จ์ˆ˜ $fโ€™โ€˜(x)$์— ์˜ํ•ด ๊ฒฐ์ • ๋ฉ๋‹ˆ๋‹ค.


[Step 3] ํ•จ์ˆ˜ $gโ€™(x)$๊ฐ€ Lipshitz ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š”์ง€ ํ™•์ธ

์šฐ๋ฆฌ๊ฐ€ $g(x)$์— ๋Œ€ํ•ด ์•Œ๊ณ  ์žˆ๋Š” ์‚ฌ์‹ค์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • Iterative ๋ฐฉ๋ฒ•์œผ๋กœ ์ฐพ์œผ๋ ค๋Š” ๊ทผ $p$์—์„œ $g(p) = 0$์„ ๋งŒ์กฑํ•ฉ๋‹ˆ๋‹ค.
  • ์œ„์˜ ์‚ฌ์‹ค์— ์˜ํ•ด ๊ทผ $p$์—์„œ $gโ€™(p) = 0$๋„ ๋งŒ์กฑ์„ ํ•ฉ๋‹ˆ๋‹ค.

์ด๋•Œ, $gโ€™(x)$๊ฐ€ ์—ฐ์† ํ•จ์ˆ˜์ด๋ฏ€๋กœ $p$๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•˜๋Š” ์–ด๋–ค ์ž‘์€ ๊ตฌ๊ฐ„ $[p-\delta, p+\delta]$์—์„œ $| gโ€™(x) | < k$๋ฅผ ๊ฐ–๋„๋ก $\delta$๋ฅผ ํ•ญ์ƒ ์žก์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


[Step 4] ํ•จ์ˆ˜ $g(x)$๊ฐ€ ์ž๊ธฐ ์‚ฌ์ƒ์„ ๋งŒ์กฑํ•˜๋Š”์ง€ ํ™•์ธ

$x_0 \in [p-\delta, p+\delta]$์— ๋Œ€ํ•ด ํ‰๊ท ๊ฐ’ ์ •๋ฆฌ์— ์˜ํ•ด ์•„๋ž˜์˜ ๋“ฑ์‹์ด ์„ฑ๋ฆฝ ํ•ฉ๋‹ˆ๋‹ค.

\[\frac{\| g(x) - g(p) \|}{\| x - p \|} = \| g'(x_0) \|\]

๋ถ„์ˆ˜ ์‹์„ ์ •๋ฆฌํ•˜๋ฉด

\[\| g(x) - g(p) \| = \| g'(x_0) \| \cdot \| x - p \|\]

๊ฐ€ ๋˜๋Š”๋ฐ, [Step 3]์—์„œ ํ•จ์ˆ˜ $gโ€™(x)$๊ฐ€ Lipschitz ์„ฑ์งˆ $|gโ€™(x)| \le k$๋ฅผ ๋งŒ์กฑํ•œ๋‹ค๋Š” ๊ฑธ ์•Œ๊ณ  ์žˆ์œผ๋‹ˆ ์•„๋ž˜์™€ ๊ฐ™์ด ๋ถ€๋“ฑ์‹์„ ์„ธ์šธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

\[\| g(x) - g(p) \| \le k \cdot \| x - p \|\]

์ด๋•Œ, $g(p) = p$์ด๋ฏ€๋กœ

\[\| g(x) - p \| \le k \cdot \| x - p \| < \| x - p\| < \delta\]

์ด๋ฏ€๋กœ $| g(x) - p | < \delta$๊ฐ€ ์„ฑ๋ฆฝ ํ•ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ํ•จ์ˆ˜ ๋งคํ•‘ ์ „ํ›„๋กœ $| x - p| < \delta$ ์„ฑ์งˆ์ด ์œ ์ง€๋œ๋‹ค๋Š” ๊ฒƒ์„ ๋งํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, $g(x)$๋Š” ๊ตญ์†Œ ๋ฒ”์œ„ ๋‚ด์—์„œ ์ž๊ธฐ ์‚ฌ์ƒ์„ ๋งŒ์กฑ ํ•ฉ๋‹ˆ๋‹ค.


Fixed-point Theorem์˜ ์กฐ๊ฑด์„ ๋ชจ๋‘ ๋งŒ์กฑํ•˜๋ฏ€๋กœ, newtonโ€™s method๋กœ ์ƒ์„ฑํ•œ sequence $\left\{ p_n \right\}_{n=1}^{\infty}$๋Š” ๊ตญ์†Œ์ ์œผ๋กœ ์ˆ˜๋ ดํ•˜๋Š” ์„ฑ์งˆ์„ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

Quadratically Convergent

Let $e_n$ denote the error at step $n$ of an iterative method, $e_n = |p_n - r|$.

The iteration is quadratically convergent if

\[\lim_{n\rightarrow\infty} \frac{e_{n+1}}{e_n^2} = M < \infty\]

์ฐธ๊ณ ๋กœ Bisection Method์ด ๊ฒฝ์šฐ โ€œLinearly Convergentโ€ ์˜€๊ณ , ์ด๋•Œ๋Š” ์—๋Ÿฌ๊ฐ€ ์•„๋ž˜์˜ ์‹์„ ๋งŒ์กฑ ํ–ˆ๋‹ค.

\[\lim_{n\rightarrow\infty} \frac{e_{n+1}}{e_n^2} = C, \quad 0 C < 1\]

vs. Linear Convergent

๋‘ ์ˆ˜๋ ด์€ ์ˆ˜๋ ด์‹์— ๋Œ€ํ•œ ๊ฒƒ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ˆ˜๋ ด ํŒจํ„ด์ด ํ™•์‹คํžˆ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฉ๋‹ˆ๋‹ค.

์„ ํ˜• ์ˆ˜๋ ด์€ ํ˜„์žฌ ์˜ค์ฐจ๊ฐ€ ์ด์ „ ์˜ค์ฐจ์—์„œ ์ผ์ • ๋น„์œจ๋กœ ๊ฐ์†Œํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ ์ด ๋น„์œจ $C$๊ฐ€ $C > 1$ ์˜€๋‹ค๋ฉด, ์˜ค์ฐจ๊ฐ€ ๋ฐœ์‚ฐํ•˜๊ณ  ๋‚  ๊ฒƒ ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์ดˆ๊ธฐ ์˜ค์ฐจ๊ฐ€ $e_0 = 0.1$์ด๊ณ  ์„ ํ˜• ์ˆ˜๋ ด๋ฅ ์ด $0.5$๋ผ๋ฉด,

  • $e_1 = 0.5 \cdot 0.1 = 0.05$
  • $e_2 = 0.5 \cdot 0.05 = 0.025$
  • $e_1 = 0.5 \cdot 0.025 = 0.0125$

์ด๋Ÿฐ ์‹์œผ๋กœ ์˜ค์ฐจ๊ฐ€ ์ผ์ • ๋น„์œจ๋กœ ๊พธ์ค€ํžˆ ๊ฐ์†Œํ•ฉ๋‹ˆ๋‹ค.


๊ทธ๋Ÿฌ๋‚˜ ์ด์ฐจ ์ˆ˜๋ ด์€ ์ดˆ๊ธฐ์—๋Š” ์˜ค์ฐจ๊ฐ€ ์ฒœ์ฒœํžˆ ์ค„์ง€๋งŒ ์˜ค์ฐจ๊ฐ€ ํ•œ๋ฒˆ ์ž‘์•„์ง€๊ธฐ ์‹œ์ž‘ํ•˜๋ฉด, ๊ธ‰๊ฒฉํžˆ ๊ฐ์†Œ ํ•ฉ๋‹ˆ๋‹ค. ์ดˆ๊ธฐ ์˜ค์ฐจ๊ฐ€ $e_0 = 0.1$์ด๊ณ  $M = 1$์ด๋ผ๊ณ  ๊ฐ€์ •ํ•˜๋ฉด,

  • $e_1 = (0.1)^2 = 0.01$
  • $e_2 = (0.01)^2 = 0.0001$
  • $e_1 = (0.00001)^2 = 0.0000 0001$

๊ทธ๋ž˜์„œ ์˜ค์ฐจ๊ฐ€ 0์— ์ˆ˜๋ ดํ•˜๋Š” ์†๋„๊ฐ€ ํ™•์‹คํžˆ ๋” ๋น ๋ฆ…๋‹ˆ๋‹ค.

๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฐ ํŒจํ„ด์€ ์ดˆ๊ธฐ ์˜ค์ฐจ $e_0$๊ฐ€ ์ถฉ๋ถ„ํžˆ ์ž‘์€ ์ƒํ™ฉ์—์„œ๋งŒ ์„ฑ๋ฆฝ ํ•ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ ์ดˆ๊ธฐ ์˜ค์ฐจ $e_0 > 1$ ์˜€๋‹ค๋ฉด, ์˜คํžˆ๋ ค ์˜ค์ฐจ๊ฐ€ ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

์ด๊ฒƒ ์—ญ์‹œ ์ด์ฐจ ์ˆ˜๋ ด์˜ ์„ฑ์งˆ๋กœ, ์ดˆ๊ธฐ ์˜ค์ฐจ๊ฐ€ ๋„ˆ๋ฌด ํฌ๋ฉด ์ด์ฐจ ์ˆ˜๋ ด์ด ๋ณด์žฅ ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋‰ดํ„ด ์ˆ˜๋ ด์ด ๊ตญ์†Œ ์ˆ˜๋ ด์„ ํ•˜๋Š” ์ด์œ ๋„ ์ด์ฐจ ์ˆ˜๋ ด ์„ฑ์งˆ์„ ๊ฐ–๊ธฐ ๋–„๋ฌธ์ด๋ผ๊ณ  ๋ณผ ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. (๋‹ญ์ด๋ƒ ๋‹ฌ๊ฑ€์ด๋ƒ)

Secant Method

๋‰ดํ„ด ๋ฐฉ๋ฒ•์€ ๊ณ„์‚ฐ์„ ์œ„ํ•ด์„œ ํ•จ์ˆ˜ $f(x)$์€ ๋„ํ•จ์ˆ˜ $fโ€™(x)$๋ฅผ ๋ฐ˜๋“œ์‹œ ๊ตฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์ธ ์ƒํ™ฉ์—์„œ๋Š” ๊ดœ์ฐฎ์ง€๋งŒ, ๋ฏธ๋ถ„ ๊ณ„์‚ฐ์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ์—๋Š” ์‚ฌ์šฉํ•˜๊ธฐ ํž˜๋“ญ๋‹ˆ๋‹ค.

๊ทธ๋ž˜์„œ ๋“ฑ์žฅํ•œ ๊ฒƒ์ด โ€œSecant Method(ํ• ์„ ๋ฒ•)โ€ ์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ $fโ€™(x)$๋ฅผ ์•„๋ž˜์™€ ๊ฐ™์ด ๊ทผ์‚ฌ ํ•˜์—ฌ ๋‰ดํ„ด ๋ฐฉ๋ฒ•์„ ์ˆ˜ํ–‰ ํ•ฉ๋‹ˆ๋‹ค.

\[f'(x) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}\]

๊ทธ๋ž˜์„œ ๊ณต์‹์„ ๋‹ค์‹œ ์ž‘์„ฑํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \approx x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}\]

์ž์„ธํ•œ ๋‚ด์šฉ์€ โ€œSecant Methodโ€ ํฌ์ŠคํŠธ์— ์ž‘์„ฑํ•˜์˜€์Šต๋‹ˆ๋‹ค!