11 minute read

์กธ์—…์„ ์œ„ํ•ด ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ์— โ€œ๋ฏธ์‹œ๊ฒฝ์ œํ•™โ€ ์ˆ˜์—…์„ ๋“ฃ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ฒฝ์ œํ•™์›๋ก  ์ˆ˜์—…์„ ์žฌ๋ฐŒ๊ฒŒ ๋“ค์–ด์„œ ๊ฒฝ์ œ ์ชฝ์ด๋ž‘ ๊ถํ•ฉ์ด ์ข‹์€ ์ค„ ์•Œ๊ณ  ์‹ ์ฒญ ํ–ˆ๋Š”๋ฐ, ์›ฌ๊ฑธโ€ฆ ์ด ๊ณผ๋ชฉ์€ ์‚ฌ์‹ค์ƒ ์ˆ˜ํ•™๊ณผ ๊ณผ๋ชฉ ์ด์—ˆ์Šต๋‹ˆ๋‹ค.. ใ…‹ใ…‹ ๊ทธ๋ž˜๋„ ์–ด์˜๋ถ€์˜ ์ˆ˜ํ•™๊ณผ ๋ณต์ˆ˜์ „๊ณต์„ ํ•˜๊ณ  ์žˆ์œผ๋‹ˆ, ์ด ์ˆ˜์—…๋„ ํž˜๋‚ด์„œ ์ž˜ ๋“ค์–ด๋ด…์‹œ๋‹ค! ์ „์ฒด ํฌ์ŠคํŠธ๋Š” โ€œ๋ฏธ์‹œ๊ฒฝ์ œํ•™โ€ ์นดํ…Œ๊ณ ๋ฆฌ์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Lotteries

์ง€๊ธˆ๊นŒ์ง€ ์‚ดํŽด๋ณธ ์„ ํ˜ธ(Preference), ํšจ์šฉ ํ•จ์ˆ˜(Utility Functions), ์„ ํƒ ํ•จ์ˆ˜(Choice Functions) ๋ชจ๋‘ ์„ ํƒ๊ณผ ๊ฒฐ๊ณผ๊ฐ€ ๊ณ ์ •์ ์œผ๋กœ ์ •ํ•ด์ง€๋Š” ์ƒํ™ฉ์ด์—ˆ์Šต๋‹ˆ๋‹ค.

๋ณต๊ถŒ(Lotteries)๋Š” ํ™•๋ฅ ์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ํฌํ•จํ•˜๋Š” ์„ ํƒ์ง€ ์ž…๋‹ˆ๋‹ค. ์‚ฌ๋žŒ์ด ์„ ํƒ์„ ํ•˜๋ฉด, ๋ณด์ƒ์ด ํ™•๋ฅ ์ ์œผ๋กœ ๊ฒฐ์ • ๋ฉ๋‹ˆ๋‹ค.

์–ด๋–ค ๋ณด์ƒ์˜ ์ง‘ํ•ฉ์„ $Z$๋ผ๊ณ  ํ•  ๋•Œ, Lottery $p$๋Š” $z \in Z$์— ํ™•๋ฅ  $p(z)$๋ฅผ ํ• ๋‹น ํ•ฉ๋‹ˆ๋‹ค.

๋กœํ„ฐ๋ฆฌ์—์„œ ํ™•๋ฅ ์ด 0๋ณด๋‹ค ํฐ ๋ณด์ƒ์˜ ์ง‘ํ•ฉ์„ support $\text{supp}(p)$๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

\[\text{supp}(p) = \left\{ z \in Z | p(x) > 0 \right\}\]
  • $L(Z)$
    • set of all lotteries over $Z$
  • $[z]$
    • the lottery that yields the prize $z$ with probability 1
    • Deterministic Lottery, Unity Lottery

๊ทธ๋ฆฌ๊ณ  ๋ณต๊ถŒ โ€œLotteryโ€์— ๋Œ€ํ•œ ํ‘œ๊ธฐ๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

each $\alpha_k = p(z_k)$

\[p = \alpha_1 \cdot z_1 \oplus \cdots \oplus \alpha_n \cdot z_n\]

Visualize set of lotteries

๋งŒ์•ฝ $Z$๊ฐ€ ๋‘ ๊ฐœ์˜ ์ƒํ’ˆ $z_1, z_2$๋กœ ๊ตฌ์„ฑ ๋˜์–ด ์žˆ๋‹ค๊ณ  ํ•œ๋‹ค๊ณ , ๊ฐ ์ƒํ’ˆ์— ๋Œ€ํ•œ ํ™•๋ฅ  $p_1, p_2$๊ฐ€ ํ• ๋‹น ๋œ๋‹ค๊ณ  ํ•˜์ž.

ํ™•๋ฅ ์˜ ํ•ฉ์€ ํ•ญ์ƒ 1์ด์–ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— $p_1 + p_2 = 1$์„ ๋งŒ์กฑํ•˜๊ณ , ์ด๋Š” ์œ„์˜ ๊ทธ๋ฆผ์ฒ˜๋Ÿผ ํ‰๋ฉด ์œ„์— ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋งŒ์•ฝ, $Z$๊ฐ€ 3๊ฐœ์˜ ์ƒํ’ˆ์œผ๋กœ ๊ตฌ์„ฑ ๋˜์–ด ์žˆ์—ˆ๋‹ค๋ฉด, ๋น„์Šทํ•˜๊ฒŒ 3์ฐจ์›์˜ ๊ณต๊ฐ„ ๋’ค์— ๊ทธ๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Preference over lotteries

์–ด๋–ค ์‚ฌ๋žŒ ์•ž์— ์—ฌ๋Ÿฌ ์ข…๋ฅ˜์˜ ๋ณต๊ถŒ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ๋žŒ๋งˆ๋‹ค ์„ ํ˜ธํ•˜๋Š” ๋ณต๊ถŒ์ด ๋‹ค๋ฅผ ํ…Œ์ฃ . ์•„๋ž˜์—์„œ๋Š” ์‚ฌ๋žŒ๋“ค์˜ ๋ณต๊ถŒ์— ๋Œ€ํ•œ ์„ ํ˜ธ์— ๋Œ€ํ•ด ์–˜๊ธฐํ•ด๋ด…๋‹ˆ๋‹ค.

Pessimist

๋น„๊ด€์ฃผ์˜์ž์˜ ์˜ˆ์‹œ ์ž…๋‹ˆ๋‹ค. ์ด ์‚ฌ๋žŒ์€ ๋ณต๊ถŒ์„ ํ‰๊ฐ€ํ•  ๋•Œ, ๊ทธ ์•ˆ์—์„œ ์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋Š” ๊ฒฐ๊ณผ๋“ค ์ค‘ โ€œ๊ฐ€์žฅ ๋‚˜์œ ๊ฒฐ๊ณผโ€๋ฅผ ๊ธฐ์ค€์œผ๋กœ ํŒ๋‹จ ํ•ฉ๋‹ˆ๋‹ค.

๊ทธ ๋‚˜์œ ๊ฒฐ๊ณผ๊ฐ€ ์•„๋ฌด๋ฆฌ ์ž‘์€ ํ™•๋ฅ ์„ ๊ฐ–๋”๋ผ๋„, ๋น„๊ด€์ฃผ์˜์ž๋Š” ๊ฐ€์žฅ ๋‚˜์œ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๊ทธ ๋ณต๊ถŒ์„ ํ‰๊ฐ€ ํ•ฉ๋‹ˆ๋‹ค.

๋น„๊ด€์ฃผ์˜์ž๋Š” ๊ฐ ๋ณต๊ถŒ์„ ๊ฐ€์žฅ ๋‚˜์œ ๊ฒฐ๊ณผ $w(p)$๋กœ ๋Œ€์ฒดํ•ด์„œ ์ƒ๊ฐ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ , ๊ทธ ๋‚˜์œ ๊ฒฐ๊ณผ ์ค‘์—์„œ ๊ฐ€์žฅ ํฐ ํšจ์šฉ์„ ๊ฐ€์ง€๋Š” ๋ณต๊ถŒ์„ ์„ ํ˜ธ ํ•ฉ๋‹ˆ๋‹ค.

Good and Bad

์ด ์‚ฌ๋žŒ์€ ๋ณต๊ถŒ์€ ์ข‹์€๊ฒƒ(good)๊ณผ ๋‚˜์œ๊ฒƒ(bad) ๋‘ ์ง‘๋‹จ์œผ๋กœ ๋ถ„ํ•  ํ•˜์—ฌ ์ƒ๊ฐ ํ•ฉ๋‹ˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ , ์ข‹์€๊ฒƒ์˜ ํ™•๋ฅ  ๋ชจ๋‘ ๋”ํ•ด $G(p)$๋กœ ๋‘ก๋‹ˆ๋‹ค.

\[G(p) = \sum_{z\in\text{good}} p(z)\]

์ด ์‚ฌ๋žŒ์€ ๊ฐ ๋ณต๊ถŒ์—์„œ ํ™•๋ฅ  $G(p)$๋ฅผ ๊ตฌํ•˜๊ณ , ์ด๊ฒƒ์ด ๋†’์€ ๋ณต๊ถŒ์„ ์„ ํ˜ธ ํ•ฉ๋‹ˆ๋‹ค.


์ด ์‚ฌ๋žŒ์€ ์ข‹์€ ๊ฒฐ๊ณผ์˜ ๊ฐ€์น˜๋Š” ๋ฌด์‹œํ•˜๊ณ , ์ข‹์€ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ฌ ํ™•๋ฅ ๋งŒ์„ ๊ธฐ์ค€์œผ๋กœ ์„ ํƒ ํ•ฉ๋‹ˆ๋‹ค.

Minimizing Options

์ด ์‚ฌ๋žŒ์€ ์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ์šฐ์˜ ์ˆ˜๊ฐ€ ์ž‘์€ ๊ฑธ ์„ ํ˜ธ ํ•ฉ๋‹ˆ๋‹ค. ์ด์œ ๋ฅผ ๋“ค์–ด๋ณด๋‹ˆ, ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ์˜ ์ˆ˜๊ฐ€ ์ ์„์ˆ˜๋ก ๋Œ€๋น„ํ•˜๊ธฐ ์‰ฝ๊ณ  ์•ˆ์‹ฌ ๋œ๋‹ค๊ณ  ํ•˜๋„ค์š”. ์ฆ‰, ๋ถˆํ™•์‹ค์„ฑ์ด ์ ์„์ˆ˜๋ก ์„ ํ˜ธํ•˜๋Š” ์‚ฌ๋žŒ ์ž…๋‹ˆ๋‹ค.

\[p > q \iff \| \text{supp}(p) \| \ge \| \text{supp}(p) \|\]

์ด๋Ÿฐ ๊ฒฝ์šฐ๋Š” ์–ด๋–ค ์ƒํ™ฉ์„ ์ค€๋น„ํ•˜๋Š”๊ฒŒ ์ค‘์š”ํ•œ ์ƒํ™ฉ, ์˜ˆ๋ฅผ ๋“ค๋ฉด ์˜๋ฃŒ ์ˆ˜์ˆ ์ด๋‚˜ ๊ตฐ์‚ฌ ์ž‘์ „์—์„  ์ด ์„ ํ˜ธ๊ฐ€ ์œ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Summary

์œ„์—์„œ ๋ณต๊ถŒ์— ๋Œ€ํ•œ 3๊ฐ€์ง€์˜ ์„ ํ˜ธ ๋ฐฉ์‹์„ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹คโ€ฆ๋งŒ ๋ณต๊ถŒ์— ๋Œ€ํ•œ ์„ ํ˜ธ๋Š” ์ •๋ง ๋‹ค์–‘ํ•˜๊ฒŒ ์ •์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์•ž์œผ๋กœ๋Š” ์ด๋Ÿฐ ๋ณต๊ถŒ ์„ ํ˜ธ๋“ค ์ค‘์—์„œ โ€œ์ข‹์€ ์„ฑ์งˆโ€์„ ๋งŒ์กฑํ•˜๋Š” ํŠน๋ณ„ํ•œ ๋ณต๊ถŒ ์„ ํ˜ธ๋“ค๋งŒ ๊ณจ๋ผ์„œ ์ข€๋” ์‚ดํŽด๋ณด๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.

Properties

Continuity

์ƒํ’ˆ๊ถŒ 100๋งŒ์›, 70๋งŒ์›, 40๋งŒ์›์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋งŒ์•ฝ 100๋งŒ์›์ด 0.5 ํ™•๋ฅ , 40๋งŒ์›์ด 0.5 ํ™•๋ฅ ์ธ ๋ณต๊ถŒ์ด ์žˆ๋‹ค๋ฉด, ๊ทธ ์‚ฌ๋žŒ์€ 70๋งŒ์›๊ณผ ๊ทธ ๋ณต๊ถŒ์„ ๋ฌด์ฐจ๋ณ„ํ•˜๊ฒŒ ์„ ํ˜ธ ํ•œ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

์œ„์™€ ๊ฐ™์€ ์ƒํ™ฉ์ด ๋ณต๊ถŒ์— ๋Œ€ํ•œ ์„ ํ˜ธ๊ฐ€ Continuity๋ฅผ ๋งŒ์กฑํ•œ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ํ˜•์‹์„ ๊ฐ–์ถฐ์„œ ์ ์–ด๋ณด๋ฉด,

๋ณต๊ถŒ์— ๋Œ€ํ•œ ๋ณด์ƒ $Z$์— ๋Œ€ํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ์—ฐ์†์ ์ธ ์„ ํ˜ธ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

\[[a] \succ [b] \succ [c]\]

๊ทธ๋ฆฌ๊ณ , $b$์™€ ๋™๋“ฑํ•œ ๊ฐ€์น˜๋กœ ์—ฌ๊ฒจ์ง€๋Š” ์–ด๋–ค ๋ณต๊ถŒ์„ ๋งŒ๋“ค์–ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค๋ฉด,

\[[b] \sim \alpha \cdot a \oplus (1-\alpha) \cdot c\]

โ€œ์„ ํ˜ธ ๊ด€๊ณ„๊ฐ€ ๋ณต๊ถŒ์— ๋Œ€ํ•ด ์—ฐ์†์„ฑ์„ ๊ฐ–๋Š”๋‹คโ€๊ณ  ๋งํ•ฉ๋‹ˆ๋‹ค.

๋น„๊ด€์ฃผ์˜์ž๊ฐ€ ๊ฐ–๋Š” ์„ ํ˜ธ๋Š” ์—ฐ์†์„ฑ์„ ๊ฐ–์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด, ๋น„๊ด€์ฃผ์˜์ž๋Š” $a$์™€ $c$๋ฅผ ์„ž์€ ๋ณต๊ถŒ์ด ์žˆ์œผ๋ฉด ํ•ญ์ƒ ์•ˆ ์ข‹์€ ์„ ํƒ์ง€ $c$๋ฅผ ๊ธฐ์ค€์œผ๋กœ ํŒ๋‹จํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.

โ€œGood and Badโ€ ์„ ํ˜ธ๋Š” vacuously ์—ฐ์†์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ ์ด์œ ๋Š” ์ข‹์€ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ฌ ํ™•๋ฅ ์˜ ์ดํ•ฉ $G(p)$๋งŒ ๋ณด๊ณ  ํŒ๋‹จํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ณด์ƒ์— ๋Œ€ํ•œ ์กฐํ•ฉ์ด ์˜๋ฏธ๊ฐ€ ์—†๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ์ด ์„ ํ˜ธ์—์„œ๋Š” ์—ฐ์†์„ฑ์„ ํ…Œ์ŠคํŠธํ•  ์ƒํ™ฉ ์ž์ฒด๊ฐ€ ์—†๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

โ€œMinimizing Optionsโ€๋„ vacuously ์—ฐ์†์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด, $[a] \succ [b] \succ [c]$์™€ ๊ฐ™์€ ๋ณด์ƒ ๊ฐ„์˜ ์„ ํ˜ธ๊ฐ€ ์•„์˜ˆ ์ •์˜๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์• ์ดˆ์— ์—ฐ์†์„ฑ์— ๋Œ€ํ•œ ์ „์žฌ๊ฐ€ ์„ฑ๋ฆฝํ•˜์ง€ ์•Š๊ณ , ์—ฐ์†์„ฑ์ด vacuously ๋งŒ์กฑํ•œ๋‹ค๊ณ  ๋ด…๋‹ˆ๋‹ค.

* โ€œvacuously ์—ฐ์†ํ•œ๋‹คโ€๋Š” ๊ฒƒ์€ ๊ณตํ—ˆํ•˜๊ฒŒ ์—ฐ์†์ด๋ผ๊ณ  ํ‘œํ˜„ํ•˜๋Š”๋ฐ, ์กฐ๊ฑด์„ ๋งŒ์กฑํ•ด์•ผ ํ•  ์ƒํ™ฉ ์ž์ฒด๊ฐ€ ์•„์˜ˆ ์กด์žฌํ•˜์ง€ ์•Š๊ธฐ ๋–„๋ฌธ์— ์กฐ๊ฑด์„ ์ž๋™์œผ๋กœ ๋งŒ์กฑํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋งํ•ฉ๋‹ˆ๋‹ค.

Compound Lottery

๋ณตํ•ฉ ๋ณต๊ถŒ, ๋ณต๊ถŒ ์•ˆ์˜ ๋ณต๊ถŒ. ๋‘ ๋‹จ๊ณ„ ์ด์ƒ์˜ ๋ฌด์ž‘์œ„์„ฑ์ด ์žˆ์„ ๋•Œ๋ฅผ ๋ชจ๋ธ๋ง ํ•˜๋Š” ๋ฐฉ๋ฒ• ์ž…๋‹ˆ๋‹ค.

๋ณด์ƒ์— ๋Œ€ํ•œ ์ง‘ํ•ฉ $Z$๊ฐ€ ์žˆ๊ณ , ๊ทธ ์œ„์— ์ •์˜๋œ ๋ณต๊ถŒ $p_1, โ€ฆ, p_k$๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋“ค์€ $L(Z)$์˜ ์›์†Œ ์ž…๋‹ˆ๋‹ค.

๋ณตํ•ฉ ๋ณต๊ถŒ์€ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ ๋ฉ๋‹ˆ๋‹ค.

\[\alpha_1 p_1 \oplus \alpha_2 p_2 \oplus \cdots \oplus \alpha_k p_k\]

์ด๊ฒƒ์„ ๊ฐ ์žฌํ™” $z \in Z$์— ๋Œ€ํ•œ ํ™•๋ฅ ์„ ํ’€์–ด์“ฐ๋ฉด ์ด๋ ‡๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

\[\text{Prob}(z) = \sum_{i=1}^{k} \alpha_k \cdot p_k(z)\]

Independence

๋ณต๊ถŒ์˜ ๋ถ€๋ถ„์— ๋Œ€ํ•œ ์ผ๊ด€์„ฑ์ด ๋ณต๊ถŒ ์ „์ฒด์— ๋Œ€ํ•œ ์ผ๊ด€์„ฑ๊ณผ ์ผ์น˜ํ•œ๋‹ค๋Š” ์„ฑ์งˆ ์ž…๋‹ˆ๋‹ค.

๋ณต๊ถŒ ๋‚ด์˜ ํŠน์ • ํ•ญ๋ชฉ์„ ๋‹ค๋ฅธ ๊ฑธ๋กœ ๋ฐ”๊ฟจ์„ ๋•Œ, ๋ณต๊ถŒ ์ „์ฒด์— ๋Œ€ํ•œ ์„ ํ˜ธ๋„ ๊ทธ์— ๋งž๊ฒŒ ์ผ๊ด€๋˜๊ฒŒ ๋ฐ”๋€Œ์–ด์•ผ ํ•œ๋‹ค๋Š” ์„ฑ์งˆ ์ž…๋‹ˆ๋‹ค.

์ˆ˜์‹์œผ๋กœ ์ดํ•ดํ•˜๋Š”๊ฒŒ ์ข€๋” ํŽธํ•ฉ๋‹ˆ๋‹ค.

๋‘ ๋ณต๊ถŒ ์‚ฌ์ด์— ์•„๋ž˜์™€ ๊ฐ™์€ ์„ ํ˜ธ๊ฐ€ ์„ฑ๋ฆฝ ํ•ฉ๋‹ˆ๋‹ค.

\[[z_k] \succcurlyeq \beta a \oplus (1-\beta) b\]

์„ ํ˜ธ๊ฐ€ ๋ณต๊ถŒ์— ๋Œ€ํ•ด ๋…๋ฆฝ์„ฑ์„ ๊ฐ–๋Š”๋‹ค๋ฉด, ์•„๋ž˜์˜ ์„ ํ˜ธ์— ๋Œ€ํ•œ ๋ถ€๋“ฑ์‹๋„ ์„ฑ๋ฆฝ ํ•ฉ๋‹ˆ๋‹ค.

\[\alpha_1 z_1 \oplus \cdots \oplus \alpha_k z_k \oplus \cdots \oplus a_n z_n \succcurlyeq \alpha_1 z_1 \oplus \cdots \oplus \alpha_k (\beta a \oplus (1-\beta) b) \oplus \cdots \oplus a_n z_n\]

๊ทธ๋ฆฌ๊ณ  ์ด ๋ช…์ œ์— ๋Œ€ํ•œ ์—ญ๋„ ์„ฑ๋ฆฝ ํ•ฉ๋‹ˆ๋‹ค.

Monotonicity

โ€œ๋‹จ์กฐ์„ฑโ€์€ ์ƒํ’ˆ์˜ ์„ ํ˜ธ ์ฒด๊ณ„์™€ ๋ณต๊ถŒ์— ๋Œ€ํ•œ ์„ ํ˜ธ ์ฒด๊ณ„๊ฐ€ ์ผ๊ด€์„ฑ ์žˆ๋„๋ก ํ•˜๋Š” ์„ฑ์งˆ ์ž…๋‹ˆ๋‹ค.

๋‘ ์ƒํ’ˆ $a$, $b$๊ฐ€ ์žˆ์„ ๋•Œ, ๋‘ ์ƒํ’ˆ ์‚ฌ์ด์—๋Š” $a \succ b$์˜ ์„ ํ˜ธ๊ฐ€ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋‘ ์ƒํ’ˆ์œผ๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ๋ณต๊ถŒ ์ง‘ํ•ฉ $L(Z)$์— ๋Œ€ํ•ด์„œ ์‚ฌ๋žŒ๋“ค์˜ ๋ณต๊ถŒ์— ๋Œ€ํ•œ ์„ ํ˜ธ๋Š” $a$ ์ƒํ’ˆ์ด ๋‹น์ฒจ๋  ํ™•๋ฅ  $\alpha$๊ฐ€ ๋†’์„์ˆ˜๋ก ์„ ํ˜ธ ๋ฉ๋‹ˆ๋‹ค.

ํ•ฉ๋ฆฌ์ ์ธ ์„ ํƒ์„ ํ•˜๊ธฐ ์œ„ํ•ด์„ , ๋” ์„ ํ˜ธ๋˜๋Š” ์ƒํ’ˆ์ธ $a$๊ฐ€ ๋‚˜์˜ฌ ํ™•๋ฅ ์ด ๋†’์•„์งˆ ์ˆ˜๋ก ๊ทธ ๋ณต๊ถŒ์„ ๋” ์„ ํ˜ธํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ ๊ทธ๊ฑธ ์ข‹์•„ํ•˜์ง€ ์•Š๋Š”๋‹ค๋ฉด ๋น„ํ•ฉ๋ฆฌ์ ์ธ ์„ ํƒ์„ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด์ฃ . ๋ณต๊ถŒ์˜ โ€œ๋‹จ์กฐ์„ฑโ€์€ ์„ ํ˜ธ ์ฒด๊ณ„๊ฐ€ ์ผ๊ด€์„ฑ ์žˆ๊ฒŒ ๊ตฌ์„ฑ๋˜๋Š” ์ฆ๊ฑฐ๋กœ ์‚ฌ์šฉ ํ•ฉ๋‹ˆ๋‹ค.

Independence implies Monotonicity

Let $Z$ be a set of prizes.

Assume that $\succcurlyeq$, a preference relation over $L(Z)$, satisfies the independence property.

Let $a$ and $b$ be two prizes with $[a] \succ [b]$, and let $\alpha$ and $\beta$ be two probabilities. Then

\[\begin{gather*} \alpha \succ \beta \\ \iff \\ \alpha \cdot a \oplus (1 - \alpha) b \succ \beta \cdot a \oplus (1 - \beta) b \end{gather*}\]

๋ณต๊ถŒ $p_{\alpha}$๋ฅผ

\[p_{\alpha} = \alpha \cdot a \oplus (1 - \alpha) \cdot b\]

๋ผ๊ณ  ํ•ฉ์‹œ๋‹ค. ๋ณต๊ถŒ์— ๋Œ€ํ•œ ์„ ํ˜ธ ๊ด€๊ณ„๊ฐ€ ๋…๋ฆฝ์„ฑ์„ ๋งŒ์กฑํ•˜๋ฏ€๋กœ, ๋ณต๊ถŒ $p_{\alpha}$์—์„œ $a$๋ฅผ $b$๋กœ ๋Œ€์ฒดํ•œ ๋ณต๊ถŒ์— ๋Œ€ํ•ด์„œ ์•„๋ž˜์˜ ์„ ํ˜ธ๊ฐ€ ์„ฑ๋ฆฝ ํ•ฉ๋‹ˆ๋‹ค.

\[p_{\alpha} \succ \alpha \cdot b \oplus (1 - \alpha) \cdot b\]

์œ„์˜ ์„ ํ˜ธ ๊ด€๊ณ„๋Š” ์‚ฌ์‹ค ์•„๋ž˜์˜ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[p_{\alpha} \succ [b]\]

์ด ์„ ํ˜ธ ๊ด€๊ณ„์—์„œ ์„ ํ˜ธ์˜ ๋…๋ฆฝ์„ฑ์„ ์‚ฌ์šฉํ•ด ๋‹ค์‹œ ์ด๋Ÿฐ ์„ ํ˜ธ ๊ด€๊ณ„๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

\[\begin{aligned} p_{\alpha} &= (\beta/\alpha) \cdot p_{\alpha} \oplus (1 - \beta/\alpha) \cdot p_{\alpha} \\ &\succ (\beta/\alpha) \cdot p_{\alpha} \oplus (1 - \beta/\alpha) \cdot b \end{aligned}\]

์ด์ œ ์œ„์˜ ์„ ํ˜ธ์— ๋Œ€ํ•œ ์‹์„ ์ž˜ ์ •๋ฆฌํ•˜๋ฉด,

\[\begin{aligned} p_{\alpha} &\succ (\beta/\alpha) \cdot p_{\alpha} \oplus (1 - \beta/\alpha) \cdot b \\ &= \beta \cdot a \oplus (1 - \beta) \cdot b \end{aligned}\]

๋”ฐ๋ผ์„œ,

\[\alpha \cdot a \oplus (1 - \alpha) \cdot b \succ \beta \cdot a \oplus (1 - \beta) \cdot b\]

$\blacksquare$

๋งบ์Œ๋ง

์ด์–ด์ง€๋Š” ํฌ์ŠคํŠธ์—์„œ๋Š” โ€œ๊ธฐ๋Œ€ ํšจ์šฉ(Expected Utility)โ€œ์— ๋Œ€ํ•ด ์‚ดํŽด๋ด…๋‹ˆ๋‹ค.

๊ฒฝ์ œํ•™์  ์„ ํƒ์„ ํ•  ๋•Œ, ๋งŽ์€ ๊ฒƒ๋“ค์ด ๋ถˆํ™•์‹ค์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฒˆ์— ์‚ดํŽด๋ณธ ๋ณต๊ถŒ(Lotteries)๋Š” ์ด ๋ถˆํ™•์‹ค์„ ๋ชจ๋ธ๋งํ•œ ๊ฒƒ ์ž…๋‹ˆ๋‹ค. ๊ธฐ๋Œ€ ํšจ์šฉ์€ ๋ถˆํ™•์‹คํ•จ์ด ์žˆ์„ ๋•Œ, ์‚ฌ๋žŒ๋“ค์˜ ์„ ํƒ์˜ ๊ธฐ์ค€์ด ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์‚ฌ๋žŒ๋“ค์ด ๊ธฐ๋Œ€ ํšจ์šฉ์— ๋”ฐ๋ผ ํ–‰๋™ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ „์ œ๋กœ ๊ฒฝ์ œํ•™ ์ด๋ก ์ด ๋ฐœ์ „ํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.