5 minute read

์กธ์—…์„ ์œ„ํ•ด ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ์— โ€œ๋ฏธ์‹œ๊ฒฝ์ œํ•™โ€ ์ˆ˜์—…์„ ๋“ฃ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ฒฝ์ œํ•™์›๋ก  ์ˆ˜์—…์„ ์žฌ๋ฐŒ๊ฒŒ ๋“ค์–ด์„œ ๊ฒฝ์ œ ์ชฝ์ด๋ž‘ ๊ถํ•ฉ์ด ์ข‹์€ ์ค„ ์•Œ๊ณ  ์‹ ์ฒญ ํ–ˆ๋Š”๋ฐ, ์›ฌ๊ฑธโ€ฆ ์ด ๊ณผ๋ชฉ์€ ์‚ฌ์‹ค์ƒ ์ˆ˜ํ•™๊ณผ ๊ณผ๋ชฉ ์ด์—ˆ์Šต๋‹ˆ๋‹ค.. ใ…‹ใ…‹ ๊ทธ๋ž˜๋„ ์–ด์˜๋ถ€์˜ ์ˆ˜ํ•™๊ณผ ๋ณต์ˆ˜์ „๊ณต์„ ํ•˜๊ณ  ์žˆ์œผ๋‹ˆ, ์ด ์ˆ˜์—…๋„ ํž˜๋‚ด์„œ ์ž˜ ๋“ค์–ด๋ด…์‹œ๋‹ค! ์ „์ฒด ํฌ์ŠคํŠธ๋Š” โ€œ๋ฏธ์‹œ๊ฒฝ์ œํ•™โ€ ์นดํ…Œ๊ณ ๋ฆฌ์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Definition

Bernoulli Function

์šฐ๋ฆฌ๋Š” ๋งŽ์€ ๊ฒฝ์šฐ, ๋ณต๊ถŒ์—์„œ ๊ฐ ์ƒํ’ˆ์˜ ๋‹น์ฒจ ํ™•๋ฅ  $p(z)$์™€ ๋‹น์ฒจ ์ƒ๊ธˆ $v(z)$๋ฅผ ์ข…ํ•ฉํ•ด ํ‰๊ท ์„ ๋งค๊ฒจ์„œ ๊ทธ ๋ณต๊ถŒ์˜ ๊ฐ€์น˜๋ฅผ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์„ ์ •์˜ํ•˜๊ณ  ์ด๋ฆ„ ๋ถ™์ธ ๊ฒƒ์ด ๊ฒฝ์ œํ•™์—์„œ์˜ โ€œBernoulli Functionโ€ ์ž…๋‹ˆ๋‹ค.

There exist a utility function $v: Z \rightarrow \mathbb{R}$,

and another utility function $U$ defined by

\[U(p) = \sum_{z \in Z} p(z) v(z)\]

for each $p \in L(Z)$. Then the function $U$ is the โ€œBernoulli Functionโ€.

Expected Utility

์–ด๋–ค ๋ณต๊ถŒ $p \in L(Z)$๊ฐ€ ์žˆ์„ ๋•Œ, ๊ทธ ๋ณต๊ถŒ์˜ ๊ธฐ๋Œ€ ํšจ์šฉ์€ Bernoulli Function $U(p)$์— ์˜ํ•ด ๊ณ„์‚ฐ ๋ฉ๋‹ˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฐ ๋ณต๊ถŒ์— ๋Œ€ํ•œ ์„ ํ˜ธ ๊ด€๊ณ„ $\succcurlyeq$๋ฅผ ์ „์ฒด ๋ณต๊ถŒ ์ง‘ํ•ฉ $L(Z)$์— ๋Œ€ํ•ด ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Properties

Continuity and Independence

๋ณต๊ถŒ์— ๋Œ€ํ•œ ๊ธฐ๋Œ€ ํšจ์šฉ์œผ๋กœ ๋งŒ๋“  ์„ ํ˜ธ ๊ด€๊ณ„๋Š” ์—ฐ์†์„ฑ๊ณผ ๋…๋ฆฝ์„ฑ์„ ๋งŒ์กฑํ•œ๋‹ค๋Š” ์„ฑ์งˆ ์ž…๋‹ˆ๋‹ค.

[Continuity]

Let $a, b, c \in Z$, and satisfies $[a] \succ [b] \succ [c]$.

For every $z \in Z$, $U([z]) = v(z)$, so $v(a) > v(b) > v(c)$.

Then, we can define $\alpha$ as follows,

\[\alpha = \frac{v(b) - v(c)}{v(a) - v(c)}\]

It belongs to $\alpha \in (0, 1)$, and $\alpha \cdot v(a) + (1 - \alpha) \cdot v(c) = v(b)$.

Then,

\[\alpha \cdot a \oplus (1 - \alpha) \cdot c \sim [b]\]

[Independence]

TODOโ€ฆ (์ข€ ๊ธธ๋‹คโ€ฆ)

Continuity and Independence implies Expected Utility

๋ณต๊ถŒ์˜ ์ง‘ํ•ฉ๊ณผ ๊ทธ ๋ณต๊ถŒ๋“ค ์‚ฌ์ด์˜ ์„ ํ˜ธ ๊ด€๊ณ„๊ฐ€ ์žˆ์„ ๊ฒƒ ์ž…๋‹ˆ๋‹ค. ์ด ๋ฌธ๋‹จ์—์„œ๋Š” ๋ณต๊ถŒ์˜ ๊ธฐ๋Œ€ ํšจ์šฉ์œผ๋กœ ๋งค๊ธด ๋ณต๊ถŒ ์‚ฌ์ด ์„ ํ˜ธ ๊ด€๊ณ„๋Š”, ๋ณต๊ถŒ ์ž์ฒด์— ๋Œ€ํ•œ ์„ ํ˜ธ ๊ด€๊ณ„์™€ ๋™์น˜๋ผ๋Š” ๋ช…์ œ ์ž…๋‹ˆ๋‹ค.

A preference relation on a set of lotteries with a finite set of prizes that satisfies the continuity and independence properties is consistent with expected utility.

TODOโ€ฆ ๊ธธ๋‹คโ€ฆ

Allais Paradox

โ€œ์•Œ๋ ˆ์˜ ์—ญ์„คโ€

๋‚ด์šฉ์€ ์œ ํŠœ๋ธŒ ์˜์ƒ์œผ๋กœ ๋Œ€์ฒด ํ•ฉ๋‹ˆ๋‹ค ใ…Žใ…Ž

์‚ฌ๋žŒ๋“ค์€ ์ข…์ข… ๊ธฐ๋Œ€ ํšจ์šฉ์— ๋”ฐ๋ฅธ ์„ ํƒ์„ ํ•˜์ง€ ์•Š๊ณ , ๋‚ฎ์€ ํ™•๋ฅ ์ด๋”๋ผ๋„ ๋†’์€ ๋ณด์ƒ์ด ์žˆ๋Š” ๋ณต๊ถŒ์„ ์„ ํƒํ•˜๊ฒŒ ๋œ๋‹ค๋Š” ์—ญ์„ค ์ž…๋‹ˆ๋‹ค.

Risk Aversion and Neutrality

๋ฌด์กฐ๊ฑด $50๋ฅผ ๋ฐ›๋Š” ๋ณต๊ถŒ๊ณผ, 50%๋กœ $100๋ฅผ ๋ฐ›๊ณ  $50๋กœ $0์›์„ ๋ฐ›๋Š” ๋ณต๊ถŒ์ด ์žˆ๋‹ค๋ฉด, ์‚ฌ๋žŒ๋“ค์€ ์–ด๋–ค ๋ณต๊ถŒ์„ ๋” ์„ ํ˜ธํ• ๊นŒ์š”?

์‚ฌ์‹ค ์ด๋Š” ์‚ฌ๋žŒ์˜ ์„ ํ˜ธ๋งˆ๋‹ค ๋‹ค๋ฆ…๋‹ˆ๋‹ค. ์–ด๋–ค ์‚ฌ๋žŒ์€ ํ™•์ •์ ์ธ ๋ณด์ƒ์ด ์˜ค๋Š” ์ฒซ๋ฒˆ์งธ ๋ณต๊ถŒ์„ ์„ ํ˜ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ทธ ์‚ฌ๋žŒ์€ ๊ธฐ๋Œ€ ํšจ์šฉ์ด ๋” ํฐ ๋ณต๊ถŒ์ด ๋งŒ๋“ค์–ด์ง€๋”๋ผ๋„, ํ™•์ •์ ์ธ ๋ณด์ƒ์„ ์ฃผ๋Š” ์„ ํƒ์ง€๋ฅผ ํ•ญ์ƒ ๋” ์„ ํ˜ธํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฐ ์‚ฌ๋žŒ์„ โ€œ์œ„ํ—˜ ํšŒํ”ผ์ (rick-averse)โ€ ์„ ํ˜ธ๋ฅผ ํ•œ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

For $p \in L(Z)$ and $E(p)$ is an expected utility of the given lottery $p$.

โ€œRisk-averseโ€ person prefer lottery with definite result over the lottery with uncertainty.

\[[E(p)] \succcurlyeq p\]

Moreover, thereโ€™s preference that strictly prefer the definite result. $[E(p)] \succ p$, strictly rick-averse.

Also, thereโ€™s preference that prefer both lottery regardless the certainty and uncertainty: $[E(p)] \sim p$, โ€œrisk-neutralโ€.

์œ„ํ—˜ ํšŒํ”ผ ํŠน์„ฑ์„ ๊ฐ€์ง„ ์‚ฌ๋žŒ์€ ๋ณต๊ถŒ์„ ๊ธฐ๋Œ“๊ฐ’ ๋งŒํผ์˜ ๊ฐ€์น˜๋กœ ๋ฐ”๊พธ๊ธฐ ์œ„ํ•ด โ€œ๊ธฐ๊บผ์ดโ€ ๋ˆ์„ ์ง€๋ถˆํ•ฉ๋‹ˆ๋‹ค.

โ€œ๋ณดํ—˜โ€์„ ๊ฐ€์ž…ํ•˜๋Š” ํ–‰์œ„๋Š” ์œ„ํ—˜ ํšŒํ”ผ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๋Š” ํ–‰๋™ ์ž…๋‹ˆ๋‹ค. ๊ตํ†ต ์‚ฌ๊ณ ๋‚˜ ์งˆ๋ณ‘์€ ํ™•๋ฅ ์ ์œผ๋กœ ๋‚ฎ์ง€๋งŒ ์•„์ฃผ ํฐ ์†ํ•ด๋ฅผ ์ž…ํž™๋‹ˆ๋‹ค. ์‚ฌ๋žŒ๋“ค์€ ์ด๊ฒƒ์„ ํšŒํ”ผํ•˜๊ธฐ ์œ„ํ•ด โ€œ๋ณดํ—˜๋ฃŒโ€๋ผ๋Š” ํ™•์ • ๋น„์šฉ์„ ๋‚ด๊ณ , ์ด ํฐ ์†ํ•ด๋ฅผ ๋ณด์žฅ๊ธˆ์œผ๋กœ ํšŒํ”ผ ํ•ฉ๋‹ˆ๋‹ค. ์‚ฌ๊ณ ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š์œผ๋ฉด ๋ณดํ—˜๋ฃŒ๋งŒ ๋‚ ๋ฆฌ๋Š” ์…ˆ์ด์ง€๋งŒ, ์‚ฌ๋žŒ๋“ค์€ ๋ณดํ—˜๋ฃŒ ๋งŒํผ์˜ ์†ํ•ด๋ฅผ ๊ฐ์ˆ˜ํ•˜๊ณ ์„œ๋ผ๋„, ํฐ ์œ„ํ—˜์„ ํšŒํ”ผํ•˜๊ณ  ์‹ถ์–ด ํ•ฉ๋‹ˆ๋‹ค.

๋ˆ„๊ตฐ๊ฐ€๋Š” ํ™•์ •์ ์ธ ๋ˆ์„ ํฌ๊ธฐํ•˜๊ณ , ๊ธฐ๋Œ€๊ฐ’์ด ๋” ๋‚ฎ์€ ๋ณต๊ถŒ(๋„๋ฐ•)์„ ์„ ํƒํ•˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฐ ๊ฒฝ์šฐ๋Š” ์œ„ํ—˜์„ ํšŒํ”ผํ•˜๋Š”๊ฒŒ ์•„๋‹ˆ๋ผ ์œ„ํ—˜์„ ํƒ์ƒ‰(rick-seeking)ํ•˜๋Š” ์„ ํ˜ธ๋ฅผ ๊ฐ€์ง„ ์‚ฌ๋žŒ์ž…๋‹ˆ๋‹ค.

Concavity and Rick aversion

ํšจ์šฉ ํ•จ์ˆ˜๊ฐ€ ์˜ค๋ชฉ(concave)ํ•˜๋‹ค๋Š” ๊ฒƒ์€ ๋ˆ์ด ๋งŽ์•„์งˆ์ˆ˜๋ก ๋А๋ผ๋Š” โ€œ์ถ”๊ฐ€ ๋งŒ์กฑ๊ฐโ€์ด ์ ์  ์ค„์–ด๋“ ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด, 0์›์—์„œ 100๋งŒ์›์ด ๋˜๋ฉด ํ–‰๋ณต๋„๊ฐ€ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜์ง€๋งŒ, 1์–ต์—์„œ 1์–ต 100๋งŒ์›์ด ๋˜๋ฉด ๊ฑฐ์˜ ๋А๋‚Œ์ด ์—†๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ ์–ด๋–ค ์‚ฌ๋žŒ์ด ์ด๋Ÿฐ ๋ฐฉ์‹์œผ๋กœ ํ–‰๋ณต๊ฐ์„ ๋А๋‚€๋‹ค๋ฉด, ๊ทธ ์‚ฌ๋žŒ์ด โ€œ์œ„ํ—˜ ํšŒํ”ผโ€ ํŠน์„ฑ์„ ๊ฐ€์ง„ ์‚ฌ๋žŒ์ด๋ผ๋Š” ์„ฑ์งˆ ์ž…๋‹ˆ๋‹ค.

TODOโ€ฆ

์  ์Šจ ๋ถ€๋“ฑ์‹์„ ์‚ฌ์šฉํ•ด ์ฆ๋ช…ํ•˜๋Š”๋ฐโ€ฆ ๋ณต์žกํ•˜๋‹ˆ ํŒจ์Šค!