6 minute read

์ˆ˜ํ•™๊ณผ ๋ณต์ˆ˜์ „๊ณต์„ ์œ„ํ•ด ์กธ์—… ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ์— โ€œ์ˆ˜์น˜ํ•ด์„๊ฐœ๋ก โ€ ์ˆ˜์—…์„ ๋“ฃ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜ํ•™๊ณผ ์กธ์—…์‹œํ—˜๋„ ๊ฒธ์‚ฌ๊ฒธ์‚ฌ ์ค€๋น„ํ•  ๊ฒธ ํ™”์ดํŒ… ํ•ด๋ด…์‹œ๋‹ค!! ์ „์ฒด ํฌ์ŠคํŠธ๋Š” โ€œNumerical Analysisโ€œ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Differentiation on Interpolation

๊ฐ€์žฅ ์‰ฌ์šด ๋ฐฉ๋ฒ•์€ ๋‹คํ•ญ์‹ ๊ทผ์‚ฌํ•œ ๊ฒฐ๊ณผ $f(x) \approx P(x)$์—์„œ ์ด๊ฑธ ๋ฏธ๋ถ„ํ•˜๋ฉด ๋„ํ•จ์ˆ˜๋ฅผ ๊ทผ์‚ฌํ•œ $fโ€™(x) \approx Pโ€™(x)$๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์„ ๊ฒ๋‹ˆ๋‹ค.

\[P'(x) = \sum_i f(x_i) L_i'(x)\]

์ด ๊ฐ’์€ ์–ด์ฐŒ์ €์ฐŒ ํ•ด์„œ ์–ป์„ ์ˆ˜๋Š” ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฐ ๋„ํ•จ์ˆ˜์˜ ๊ทผ์‚ฌ๊ฐ€ ์–ผ๋งŒํผ์˜ ์˜ค์ฐจ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š”์ง€๋„ ์•Œ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค.

๋ผ๊ทธ๋ž‘์ฃผ ๊ทผ์‚ฌ์—์„œ ์˜ค์ฐจํ•ญ์€ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ ๋ฉ๋‹ˆ๋‹ค. cc. Interpolation Error

\[f(x) - P(x) = \frac{\omega_{n+1}(x)}{(n+1)!} f^{(n+1)} (\xi(x))\]

๋„ํ•จ์ˆ˜์˜ ๊ทผ์‚ฌ์— ๋Œ€ํ•œ ์˜ค๋ฅ˜๋Š” ์ด๊ฒƒ์„ $x$์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

\[f'(x) - P'(x) = \frac{d}{dx} \left( \frac{\omega_{n+1}(x)}{(n+1)!} f^{(n+1)} (\xi(x)) \right)\]

๊ทธ๋Ÿฌ๋‚˜ ์ด ๊ฒฐ๊ณผ๋Š” ์ „ํ˜€ ๋„์›€์ด ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค! ์ด๊ฒƒ์„ ๊ตฌํ•  ๋•Œ์˜ ๊ฐ€์žฅ ํฐ ์žฅ์• ๋ฌผ์€ $\xi(x)$ ์ž…๋‹ˆ๋‹ค. ๋ฏธ๋ถ„์„ ํ•˜๊ฒŒ ๋˜๋ฉด ์ฒด์ธ๋ฃฐ์— ์˜ํ•ด $d\xi / dx$๊ฐ€ ๋‚˜์˜ค๊ฒŒ ๋˜๋Š”๋ฐ, ์šฐ๋ฆฌ๋Š” $xi(x)$ ํ•จ์ˆ˜๊ฐ€ ๋ฌด์—‡์ธ์ง€ ํŠน์ •ํ•  ์ˆ˜๋„ ์—†๊ณ  ์ด๊ฒŒ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ์ง€๋„ ๋ชจ๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ์ด ๋ฏธ๋ถ„ ์ž์ฒด๊ฐ€ ์˜๋ฏธ๊ฐ€ ์—†๊ณ  ํ•  ์ˆ˜๋„ ์—†์Šต๋‹ˆ๋‹ค.

Lagrange Differentiation Error Formula

๊ทธ๋Ÿฐ๋ฐ, ์ด๊ฑธ ์ข€๋” ๊ฐ„๋‹จํ•œ ๋ฒ„์ „์˜ ๋ณด๊ฐ„ ์˜ค์ฐจ๋กœ ํ‘œํ˜„ํ•˜๋Š” ์ •๋ฆฌ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

๋ผ๊ทธ๋ž‘์ฃผ ๋ณด๊ฐ„๋ฒ•์ด ์กด์žฌํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๋ณธ ์„ธํŒ…์€ ๊ฐ™์Šต๋‹ˆ๋‹ค. ํ•จ์ˆ˜ $f(x)$๋Š” ์—ฐ์†์ด์–ด์•ผ ํ•˜๊ณ , ์ด๊ฒƒ์€ $n+1$๋ฒˆ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ณ  ์—ฐ์†์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  $n+1$๊ฐœ์˜ $x_i, i=0, 1, \dots, n$ ์ ๋“ค์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.

๊ทธ๋Ÿฌ๋ฉด ์•„๋ž˜์™€ ๊ฐ™์ด $n$๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์  $\eta_i, i=1, \dots, n$์ด ์žˆ๊ณ , ๊ฐ $x$์— ๋Œ€์‘ ๋˜๋Š” $\xi(x)$๋„ ์กด์žฌํ•ด ์•„๋ž˜์˜ ์˜ค์ฐจ ๋“ฑ์‹์ด ์„ฑ๋ฆฝํ•ฉ๋‹ˆ๋‹ค.

\[f'(x) - P'(x) = \frac{f^{(n+1)}(\xi(x))}{n!} \omega_n^\ast (x)\]

์ด๋•Œ, $\omega_n^\ast (x) = (x-\eta_1)\cdots(x-\eta_n)$ ์ž…๋‹ˆ๋‹ค.

์ฒ˜์Œ์— ์ฒด์ธ๋ฃฐ ๋•Œ๋ฌธ์— $d\xi/dx$๊ฐ€ ๋‚˜์˜จ๋‹ค๊ณ  ํ–ˆ๋˜ ๊ทธ ์˜ค์ฐจ๋ž‘์€ ์ข€ ๋‹ค๋ฅธ ๋…€์„์ด ๋‚˜์™”๋‹ค!! ๊ทธ๋ฆฌ๊ณ  $\eta_i$๋ผ๋Š” ์ฒ˜์Œ ๋ณด๋Š” ์ ๋“ค๋„ ์ •์˜๋˜๊ณ , ๊ทธ๊ฑธ๋กœ $\omega_n^\ast(x)$๋ผ๋Š” ์ƒˆ๋กœ์šด ๋‹คํ•ญ์‹๋„ ์ฆ๊ฐ€ํ–ˆ๋‹ค. ๐Ÿ˜ตโ€๐Ÿ’ซ

์ฒ˜์Œ์—” ์ด ์ •๋ฆฌ๊ฐ€ ์—„์ฒญ ํ—ท๊ฐˆ๋ฆฌ๋Š”๋ฐ, ํ•œ๋ฒˆ ์ตœ๋Œ€ํ•œ ์„ค๋ช…์„ ํ•ด๋ณด์ž!

์ผ๋‹จ $f(x)$์™€ $P(x)$๋Š” ์ •์˜์— ๋”ฐ๋ผ์„œ, $i=0, 1, \dots, n$, $n+1$๊ฐœ์˜ ์ ์— ๋Œ€ํ•ด์„œ ์•„๋ž˜์˜ ๋“ฑ์‹์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

\[f(x_i) - P(x_i) = 0\]

์ž˜ ๋ณด๋ฉด, $f(x) - P(x)$ ํ•จ์ˆ˜๋Š” $n+1$๊ฐœ ์ ์— ๋Œ€ํ•ด ์„œ๋กœ ํ•จ์ˆ˜๊ฐ’์ด ๊ฐ™์€ ์ง€์ ์ด ์กด์žฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋ฉด, $(x_{i-1}, x_i)$ ์‚ฌ์ด์˜ ์–ด๋–ค ์ ์— $\eta_i$๊ฐ€ ์กด์žฌํ•ด์„œ, ๋„ํ•จ์ˆ˜์— ๋Œ€ํ•ด ์•„๋ž˜์˜ ๋“ฑ์‹์„ ๋งŒ์กฑํ•œ๋‹ค! ์ด๊ฒƒ์€ โ€œ๋กค์˜ ์ •๋ฆฌโ€œ์— ๋”ฐ๋ฅธ ๊ฒฐ๊ณผ์ด๋‹ค.

\[f'(\eta_i) - P'(\eta_i) = 0\]

์ด $\eta_i$ ์ ์€ $i=1, \dots, n$๋กœ $n$๊ฐœ ์กด์žฌํ•œ๋‹ค. ์ด ์ ๋“ค์€ ์›๋ณธ ๋„ํ•จ์ˆ˜ $fโ€™(x)$์™€ ๋ณด๊ฐ„ ๋„ํ•จ์ˆ˜ $Pโ€™(x)$๊ฐ€ ๊ฐ™๊ฒŒ ๋˜๋Š” ํŠน๋ณ„ํ•œ ์ ๋“ค ์ž…๋‹ˆ๋‹ค.

๋งŒ์•ฝ ๋„ํ•จ์ˆ˜ ์˜ค์ฐจ๋ฅผ ๊ตฌํ•˜๋ ค๋Š” ์  $x$๊ฐœ $\eta_i$ ์ค‘ ํ•˜๋‚˜์™€ ๊ฐ™๋‹ค๋ฉด ์˜ค์ฐจ๋Š” 0์ด ๋˜๊ฒ ์ง€๋งŒ, ์šฐ๋ฆฌ๋Š” ์ „๊ฐœ๋ฅผ ๊ณ„์†ํ•˜๊ธฐ ์œ„ํ•ด ๋„ํ•จ์ˆ˜ ์˜ค์ฐจ๋ฅผ ๊ตฌํ•˜๋ ค๋Š” $x$๊ฐ€ ๋ชจ๋“  $\eta_i$๋“ค๊ณผ ์„œ๋กœ ๋‹ค๋ฅธ ์ ์ด๋ผ๊ณ  ๊ฐ€์„ฑ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.


์ด๋•Œ, ์ƒˆ๋กœ์šด ํ•จ์ˆ˜ $\chi(t)$๋ฅผ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ ํ•ฉ๋‹ˆ๋‹ค.

\[\chi(t) = f'(t) - P'(t) - \frac{f'(x) - P'(x)}{\omega_n^\ast(x)} \omega_n^\ast (t)\]

์ด ํ•จ์ˆ˜๋Š” ํŠน๋ณ„ํžˆ ์ •์˜๋œ ํ•จ์ˆ˜๋กœ ์•„๋ž˜์™€ ๊ฐ™์€ ์„ฑ์งˆ์„ ๋งŒ์กฑ ํ•ฉ๋‹ˆ๋‹ค.

[$t = \eta_i$]

์ •์˜์— ๋”ฐ๋ผ $\omega_n^\ast(\eta_i) = 0$๊ฐ€ ๋˜๊ณ ,

\[\begin{aligned} \chi(t = \eta_i) &= f'(\eta_i) - P'(\eta_i) - \frac{f'(x) - P'(x)}{\omega_n^\ast(x)} \cancel{\omega_n^\ast (\eta_i)} \\ &= f'(\eta_i) - P'(\eta_i) \\ &= 0 \end{aligned}\]

[$t = x$]

\[\begin{aligned} \chi(t = x) &= f'(x) - P'(x) - \frac{f'(x) - P'(x)}{\omega_n^\ast(x)} \omega_n^\ast (x) \\ &= f'(x) - P'(x) - \left(f'(x) - P'(x)\right) \\ &= 0 \end{aligned}\]

์ฆ‰, ๋ชจ๋“  $\eta_i$์™€ $x$์— ๋Œ€ํ•ด์„œ $\chi(t) = 0$์ด ๋ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ํ•จ์ˆ˜ $\chi(t)$๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ $n+1$๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์  $(\eta_1, \eta_2, \dots, \eta_n, x)$์—์„œ 0์ด ๋˜๋Š” ํ•จ์ˆ˜๋ผ๋Š” ๊ฑธ ๋งํ•ฉ๋‹ˆ๋‹ค.


[๋กค์˜ ์ •๋ฆฌ๋ฅผ ์ ์šฉ]

ํ•จ์ˆ˜ $chi(t)$๊ฐ€ $n+1$๊ฐœ ์ ์—์„œ 0์ด ๋˜๋ฏ€๋กœ ๋กค์˜ ์ •๋ฆฌ์— ๋”ฐ๋ผ $\chiโ€™(t) = 0$์ด ๋˜๋Š” $t$๊ฐ€ $(\eta_1, \eta_2), (\eta_2, \eta_3), \dots$ ์‚ฌ์ด์— $n$๊ฐœ ์กด์žฌํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋กค์˜ ์ •๋ฆฌ๋ฅผ ์ ์šฉํ•˜๋ฉด, $\chiโ€™โ€˜(t) = 0$์ด ๋˜๋Š” ์ ๋„ $n-1$๊ฐœ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.

์ด๊ฒƒ์„ ๋ฐ˜๋ณตํ•˜๋ฉด ์ตœ์ข…์ ์œผ๋กœ $\chi^{(n)}(t) = 0$์ด ๋˜๋Š” ํ•œ ์ ์„ $(a, b)$ ์•ˆ์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ ํ•œ ์ ์„ $\xi$๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

\[\chi^{(n)} (\xi) = 0\]


TODOโ€ฆ ๋‚˜๋จธ์ง€๋Š” ์ถ”ํ›„์—โ€ฆ Hermite ๋ณด๊ฐ„๋ฒ•์˜ ์œ ์ผ์„ฑ์„ ์ฆ๋ช…ํ•  ๋•Œ์™€ ๋น„์Šทํ•œ ๋…ผ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋œ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹คโ€ฆ

Convergence of Interpolation Polynomial

TODOโ€ฆ ๊ธฐ๋ง๊ณ ์‚ฌ ๋•Œ ๋‹ค์‹œ ์˜ต์‹œ๋‹ค.

๋งบ์Œ๋ง

์ด ํฌ์ŠคํŠธ์—์„œ๋Š” ๋ณด๊ฐ„(interpolation)์œผ๋กœ ์–ป์€ ํ•จ์ˆ˜๋ฅผ ๋ฏธ๋ถ„ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ˆ˜์น˜์  ๋ฏธ๋ถ„์„ ๋‹ฌ์„ฑ ํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ ํฌ์ŠคํŠธ์—์„œ๋Š” ์ ๋ถ„์—์„œ์˜ ์•„์ด๋””์–ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” โ€œ๋‰ดํ„ด-์ฝ”์ธ  ๋ฐฉ์‹โ€์œผ๋กœ ์ถ”์‹œ์  ๋ฏธ๋ถ„์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

๋‘ ๋ฐฉ์‹์˜ ์ฐจ์ด๋Š” ๋ณด๊ฐ„ ๊ธฐ๋ฐ˜์—์„œ๋Š” ํ•จ์ˆ˜๊ฐ’์ด ๋งŽ์ด ์ฃผ์–ด์กŒ๊ณ , ์›๋ณธ ํ•จ์ˆ˜๊ฐ€ ๋งค๋„๋Ÿฝ๊ณ  ๋ถ€๋“œ๋Ÿฌ์šฐ๋ฉฐ ์ •๋ฐ€ํ•œ ๋ฏธ๋ถ„๊ฐ’์ด ํ•„์š”ํ•œ ๊ฒฝ์šฐ์— ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ โ€œ๋‰ดํ„ด-์ฝ”์ธ  ๋ฐฉ์‹โ€์€ ๋ฏธ๋ถ„๊ฐ’์„ ์•„๋ ค๋Š” $x_i$ ์ฃผ๋ณ€์˜ ๊ฐ’๋งŒ ์•Œ๊ณ  ์žˆ๊ณ , ๋ฏธ๋ถ„๊ฐ’ ๊ณ„์‚ฐ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š” ๊ฒฝ์šฐ์— ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

Reference