๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•์œผ๋กœ ๋„ํ•จ์ˆ˜์˜ ๊ทผ์‚ฌ๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด.

10 minute read

์ˆ˜ํ•™๊ณผ ๋ณต์ˆ˜์ „๊ณต์„ ์œ„ํ•ด ์กธ์—… ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ์— โ€œ์ˆ˜์น˜ํ•ด์„๊ฐœ๋ก โ€ ์ˆ˜์—…์„ ๋“ฃ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜ํ•™๊ณผ ์กธ์—…์‹œํ—˜๋„ ๊ฒธ์‚ฌ๊ฒธ์‚ฌ ์ค€๋น„ํ•  ๊ฒธ ํ™”์ดํŒ… ํ•ด๋ด…์‹œ๋‹ค!! ์ „์ฒด ํฌ์ŠคํŠธ๋Š” โ€œNumerical Analysisโ€œ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋“ค์–ด๊ฐ€๋ฉฐ

์ง€๊ธˆ๊นŒ์ง€ ํ•จ์ˆ˜ $f(x)$๋ฅผ ๋งค๋„๋Ÿฌ์šด ํ•จ์ˆ˜๋กœ ๋ณด๊ฐ„ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๋‹ค๋ค˜๊ณ , ์ด๋ ‡๊ฒŒ ๋ณด๊ฐ„ํ•œ ํ•จ์ˆ˜๋กœ ๋„ํ•จ์ˆ˜ $fโ€™(x)$๋ฅผ ๊ทผ์‚ฌํ•˜๋Š” ๊ฒƒ๋„ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค.

์ด๋ฒˆ ํฌ์ŠคํŠธ๋ถ€ํ„ฐ ๋ณด๊ฐ„ ๊ธฐ๋ฐ˜์ด ์•„๋‹Œ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ์ ‘๊ทผํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค! ๊ทธ๋ฆฌ๊ณ  ๋„ํ•จ์ˆ˜ $fโ€™(x)$์— ๋Œ€ํ•œ ๋‹ค๋ฅธ ๊ทผ์‚ฌ ๋ฐฉ๋ฒ•์ธ โ€œ๋‰ดํ„ด-์ฝ”์ธ  ๋ฐฉ์‹โ€์— ๋Œ€ํ•ด ์‚ดํŽด๋ด…๋‹ˆ๋‹ค.

Forward, Backward Difference

๋ณธ๋ž˜ ํ•จ์ˆ˜์˜ ๋„ํ•จ์ˆ˜๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ๊ทนํ•œ์„ ์‚ฌ์šฉํ•ด ์ •์˜ ํ•ฉ๋‹ˆ๋‹ค.

\[f'(x) = \lim_{h\rightarrow 0} \frac{f(x+h) - f(x)}{h}\]

๊ทธ๋Ÿฐ๋ฐ, ์ˆ˜์น˜์  ์ ‘๊ทผ์—์„œ๋Š” $h \rightarrow 0$ ๊ฐ™์€ ๊ฑธ ํ•  ์ˆ˜ ์—†์œผ๋‹ˆ, ์ ๋‹นํ•œ ๋ฏธ์†Œ๊ฐ’ $h$๋ฅผ ์žก์€ ํ›„ ์•„๋ž˜์™€ ๊ฐ™์ด ๋ฏธ๋ถ„ ๊ทผ์‚ฌ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.

\[D_+ f(x) = \frac{f(x+h) - f(x)}{h}\]

๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์„ โ€œ์ „๋ฐฉ ์ฐจ๋ถ„(Forward Difference)โ€๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ ์ด์ „ ๊ฐ’์„ ์‚ฌ์šฉํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.

\[D_{-} f(x) = \frac{f(x) - f(x-h)}{h}\]

์ด๊ฒƒ์„ โ€œํ›„๋ฐฉ ์ฐจ๋ถ„(Backward Difference)โ€๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค. ์ „๋ฐฉ ์ฐจ๋ถ„๊ณผ ํ›„๋ฐฉ ์ฐจ๋ถ„์€ ํ•œ์ชฝ์— ๋Œ€ํ•œ ๊ทผ์‚ฌ ์ž…๋‹ˆ๋‹ค: one-sided approximation of $fโ€™(x)$.

1st order Accuracy

$D_{+}f(x)$์™€ $D_{-}f(x)$ ๋ชจ๋‘ โ€œ1์ฐจ ์ •ํ™•๋„โ€๋ฅผ ๊ฐ€์ง€๋Š” ๊ทผ์‚ฌ๋ฒ• ์ž…๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ์‹ค์ œ ๋ฏธ๋ถ„๊ฐ’๊ณผ ์ „๋ฐฉ/ํ›„๋ฐฉ ์ฐจ๋ถ„์œผ๋กœ ๊ทผ์‚ฌํ•œ ๊ฐ’์˜ ์˜ค์ฐจ๊ฐ€ $h$์— ๋น„๋ก€ํ•˜๋Š” $O(h)$๋กœ ์ •์˜๋œ๋‹ค๋Š” ๊ฒƒ์„ ๋งํ•ฉ๋‹ˆ๋‹ค.

์ด๊ฒƒ์€ $h$ ๊ฐ’์„ ์ž‘๊ฒŒ ํ• ์ˆ˜๋ก ์‹ค์ œ๊ฐ’๊ณผ์˜ ์ฐจ์ด๊ฐ€ ์„ ํ˜•์œผ๋กœ ๊ฐ์†Œํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋งํ•ฉ๋‹ˆ๋‹ค.

Centered Difference

์š”๋ ‡๊ฒŒ ๋ณผ๋ก์ ์—์„œ์˜ ๋ฏธ๋ถ„๊ฐ’์„ ๊ทผ์‚ฌํ•œ๋‹ค๊ณ  ํ•˜๋ฉด, ์ „๋ฐฉ ์ฐจ๋ถ„๊ณผ ํ›„๋ฐฉ ์ฐจ๋ถ„์€ ๊ทธ๋ฆฌ ์ข‹์€ ๊ฐ’์„ ์ œ์‹œํ•˜์ง€ ๋ชป ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋“ฑ์žฅํ•œ ๊ฒƒ์ด ์ด ๋‘˜์˜ ํ‰๊ท ๊ฐ’์„ ์‚ฌ์šฉํ•˜๋Š” ์ค‘์•™ ์ฐจ๋ถ„ ์ž…๋‹ˆ๋‹ค.

\[D_0 f(x) = \frac{f(x+h) - f(x-h)}{2h} = \frac{D_{+}f(x) - D_{-}f(x)}{2}\]

์œ„ ๊ทธ๋ฆผ์—์„œ ๋ณผ ์ˆ˜ ์žˆ๋“ฏ์ด ์ค‘์•™ ์ฐจ๋ถ„ $D_0 f(x)$๊ฐ€ ํ•œ์ชฝ๋งŒ ๋ณด๋Š” ์ฐจ๋ถ„๋ณด๋‹ค๋Š” ๋” ์ข‹์€ ๊ทผ์‚ฌ๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๊ฑธ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ์ค‘์•™ ์ฐจ๋ถ„์€ โ€œ2์ฐจ ์ •ํ™•๋„โ€๋ฅผ ์ œ๊ณต ํ•ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ์‹ค์ œ๊ฐ’๊ณผ์˜ ์˜ค์ฐจ๊ฐ€ $h^2$์— ๋น„๋ก€ํ•œ๋‹ค๋Š” ๊ฒƒ์œผ๋กœ $O(h^2)$๋ผ๊ณ  ํ‘œํ˜„ ํ•ฉ๋‹ˆ๋‹ค.

Higher-order Accuracy

์ค‘์•™ ์ฐจ๋ถ„๋ณด๋‹ค ๋” ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ฐ–๋„๋ก ํ•˜๋Š” ๊ฒƒ๋„ ๊ฐ€๋Šฅ ํ•ฉ๋‹ˆ๋‹ค.

\[D_3 f(x) = \frac{2f(x+h) + 3f(x) - 6 f(x-h) + f(x-2h)}{6h}\]

๋ผ๊ณ  ์ฐจ๋ถ„์„ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ์ด ์ฐจ๋ถ„์€ $x-2h, x-h, x, x+h$ 4๊ฐœ ์ ์„ ํ™œ์šฉํ•ด ์ฐจ๋ถ„์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ด ์ฐจ๋ถ„์€ โ€œ3์ฐจ ์ •ํ™•๋„โ€๋ฅผ ์ œ๊ณต ํ•ฉ๋‹ˆ๋‹ค: $O(h^3)$.

์œ„์™€ ๊ฐ™์€ ๊ณต์‹์„ ์œ ๋„ํ•˜๋Š” ์‹œ์Šคํ…œ์ด โ€œ๋‰ดํ„ด-์ฝ”์ธ  ๋ฐฉ์‹โ€์ž…๋‹ˆ๋‹ค. ์•ž์œผ๋กœ ์ด์–ด์ง€๋Š” ๋‚ด์šฉ์—์„œ ์ด ๋ฐฉ์‹์— ๋Œ€ํ•ด ์‚ดํŽด๋ณผ ์˜ˆ์ • ์ž…๋‹ˆ๋‹ค.

log-log scale

โ€ฆ ์Šคํ‚ต!

Truncation Error

$f(x+h)$์™€ $f(x-h)$๋ฅผ ํ…Œ์ผ๋Ÿฌ ์ „๊ฐœ ํ•ด๋ด…์‹œ๋‹ค.

\[\begin{aligned} f(x+h) &= f(x) + hf'(x) + \frac{1}{2}h^2 f''(x) + \frac{1}{6}h^3 f'''(x) + O(h^4) \\ f(x+h) &= f(x) - hf'(x) + \frac{1}{2}h^2 f''(x) - \frac{1}{6}h^3 f'''(x) + O(h^4) \end{aligned}\]

๊ทธ๋ฆฌ๊ณ  ์ด๊ฑธ ์ „๋ฐฉ/ํ›„๋ฐฉ ์ฐจ๋ถ„์˜ ๊ณต์‹์— ๋Œ€์ž…ํ•ด๋ณด๋ฉดโ€ฆ

\[D_{+} f(x) = \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{1}{2}h f''(x) + \frac{1}{6} h^2 f'''(x) + O(h^3)\]

์ „๋ฐฉ ์ฐจ๋ถ„์€ $fโ€™(x)$๋Š” ์ •ํ™•ํžˆ ๋‚˜์˜จ ๊ฒƒ์ด๊ณ , ๊ทธ ๋‹ค์Œ ์˜ค์ฐจํ•ญ์€ $\frac{h}{2} fโ€™โ€˜(x)$ ํฌ๊ธฐ๋กœ ๋‚˜์˜ต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์ „๋ฐฉ ์ฐจ๋ถ„์˜ ์˜ค์ฐจ๋Š” $O(h)$๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ํ›„๋ฐฉ ์ฐจ๋ถ„์˜ ์˜ค์ฐจ๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $O(h)$๋กœ ๋‚˜์˜ต๋‹ˆ๋‹ค.

์ค‘์•™ ์ฐจ๋ถ„์— ๋Œ€ํ•ด์„œ๋„ ๊ตฌํ•ด๋ด…์‹œ๋‹ค. ์ค‘์•™ ์ฐจ๋ถ„์€ ์ „๋ฐฉ/ํ›„๋ฐฉ ์ฐจ๋ถ„์„ ๋”ํ•œ ๊ฒƒ์˜ ํ‰๊ท ์œผ๋กœ ๊ตฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

\[D_0 f(x) = \frac{D_{+}f(x) + D_{-}f(x)}{2} = f'(x) + \frac{1}{6} h^2 f'''(x) + O(h^4)\]

๊ทธ๋ž˜์„œ ์ค‘์•™ ์ฐจ๋ถ„์—์„œ๋Š” ์˜ค์ฐจ๊ฐ€ $O(h^2)$์˜ ์ •ํ™•๋„๋ฅผ ๊ฐ–๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.


๋งˆ์ง€๋ง‰์œผ๋กœ $D_3 f(x)$์— ๋Œ€ํ•ด์„œ๋„ ์ˆ˜ํ–‰ํ•ด๋ด…์‹œ๋‹ค. $D_3$๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด์„  $f(x-2h)$์˜ ํ…Œ์ผ๋Ÿฌ ์ „๊ฐœ๊ฐ€ ํ•„์š” ํ•ฉ๋‹ˆ๋‹ค.

\[f(x - 2h) = f(x) - 2h f'(x) + \frac{1}{2}(2h)^2 f''(x) - \frac{1}{6}(2h)^3 f'''(x) + O(h^4)\]

์ด๊ฑธ $D_3 f(x)$์˜ ๊ณต์‹์— ๋”ฐ๋ผ ์กฐํ•ฉํ•˜๊ณ  ์ •๋ฆฌํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์ด ๋ฉ๋‹ˆ๋‹ค.

\[D_3 f(x) = f'(x) + \frac{1}{12} h^3 f^{(4)} (x) + O(h^4)\]

๋”ฐ๋ผ์„œ, 3์ฐจ ์ •ํ™•๋„๊ฐ€ $O(h^3)$๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.

Rounding Error

์ˆ˜์น˜ ๋ฏธ๋ถ„์€ $h$ ๊ฐ’์— ๋”ฐ๋ผ ์˜ค์ฐจ๊ฐ€ ์ž‘์•„์ง‘๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‹จ์ˆœํžˆ $h$๋ฅผ ๋ฌด์กฐ๊ฑด ์ž‘๊ฒŒ ๋งŒ๋“ ๋‹ค๊ณ  ์ข‹์€ ๊ฒƒ์€ ์•„๋‹™๋‹ˆ๋‹ค!

$h$๊ฐ€ ๋„ˆ๋ฌด ์ž‘์•„์ง€๋ฉด, โ€œ๋ฐ˜์˜ฌ๋ฆผ ์˜ค์ฐจ(round-off error)โ€๊ฐ€ ์ปค์ ธ์„œ ์˜คํžˆ๋ ค ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜๋น ์งˆ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๊ฒƒ์˜ ์ปดํ“จํ„ฐ์˜ ๋ถ€๋™์†Œ์ˆ˜์  ์—ฐ์‚ฐ์˜ ์ •๋ฐ€๋„ ์ œํ•œ ๋˜์–ด ์žˆ์–ด์„œ ๋ฐœ์ƒํ•˜๋Š” ํ˜„์ƒ ์ž…๋‹ˆ๋‹ค.

ํ•จ์ˆ˜ $f(x) = e^x$์˜ ์ˆ˜์น˜์  ๋ฏธ๋ถ„์„ ํ•  ๋•Œ์˜ ์˜ค์ฐจ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ์ž…๋‹ˆ๋‹ค.

\[\begin{aligned} D_+ f(0) &= \frac{f(0+h) - f(0)}{h} = \frac{e^h - 1}{h}\\ D_0 f(0) &= \frac{f(0+h) - f(0-h)}{2h} = \frac{e^h - e^{-h}}{2h}\\ \end{aligned}\]

๋ณด๋ฉด, $10^{-6}$๊นŒ์ง€๋Š” ์˜ค์ฐจ๊ฐ€ ๊ฐ์†Œํ•˜์ง€๋งŒ, ๊ทธ ์ดํ›„๋ถ€ํ„ฐ๋Š” ์˜ค์ฐจ๊ฐ€ ์˜คํžˆ๋ ค ์ฆ๊ฐ€ํ•ฉ๋‹ˆ๋‹ค!

์ด๊ฒƒ์€ ๋‘๊ฐœ์˜ ๊ฑฐ์˜ ๊ฐ™์€ ์ˆ˜๋ฅผ ๋นผ๋Š” ์—ฐ์‚ฐ $e^h - 1$์—์„œ $h$ ๊ฐ’์ด ์•„์ฃผ์•„์ฃผ ์ž‘์•„์ง€๋ฉด์„œ ์˜๋ฏธ์žˆ๋Š” ์ˆซ์ž๊ฐ€ ์†Œ์‹ค๋˜์–ด ๋ฒ„๋ฆฌ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ์ด ํ˜„์ƒ์„ โ€œloss of significanceโ€๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.


์ด๊ฒƒ์€ ์ด๋ก ๊ณผ ์‹ค์ œ ๊ณ„์‚ฐ์—์„œ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๋ถ€๋ถ„์œผ๋กœ โ€œTruncation Errorโ€๋Š” ์ด๋ก ์ ์œผ๋กœ $h$๊ฐ€ ์ž‘์„์ˆ˜๋ก ์ž‘์•„์ง€์ง€๋งŒ, ์‹ค์ œ ์ปดํ“จํ„ฐ์—์„œ๋Š” โ€œRounding Errorโ€๋กœ ์ธํ•ด $h$๊ฐ€ ๋„ˆ๋ฌด ์ž‘์œผ๋ฉด ๋ฐ˜๋Œ€๋กœ ์˜ค์ฐจ๊ฐ€ ์ฆ๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋”ฐ๋ผ์„œ, $h$๋Š” ๋„ˆ๋ฌด ํฌ์ง€๋„, ๋„ˆ๋ฌด ์ž‘์ง€๋„ ์•Š์€ ์ ์ ˆํ•œ ์ˆ˜์ค€์—์„œ ๊ท ํ˜•์„ ๋งž์ถฐ์•ผ ํ•ฉ๋‹ˆ๋‹ค.

Deep insight for machine error

(์Šคํ‚ตโ€ฆ!, ์™ ์ง€ ์ˆ˜ํ•™๊ณผ ์กธ์‹œ์—๋Š” ์•ˆ ๋‚˜์˜ฌ ๊ฒƒ ๊ฐ™์•„์„œโ€ฆ)

Method of Undermined Coefficients

ํ•จ์ˆ˜๋ฅผ ํ…Œ์ผ๋Ÿฌ ์ „๊ฐœํ•œ ํ›„, ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•์„ ์ด์šฉํ•ด ๋„ํ•จ์ˆ˜ $fโ€™(x)$๋ฅผ ๊ทผ์‚ฌํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด, $fโ€™(x)$๋ฅผ $f(x)$, $f(x-h)$, $f(x-2h)$ ์„ธ ์ ์„ ๊ฐ€์ง€๊ณ  ๊ทผ์‚ฌํ•œ๋‹ค๊ณ  ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์–ป๊ณ ์ž ํ•˜๋Š”, ๊ทผ์‚ฌ์˜ ํ˜•ํƒœ๋Š” ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[f'(x) \approx a f(x) + b f(x-h) + cf(x-2h)\]

์ด๋•Œ, $a, b, c$๊ฐ€ ๊ทธ ๊ณผ์ •์—์„œ ๊ตฌํ•ด์•ผ ํ•˜๋Š” ๋ฏธ์ •๊ณ„์ˆ˜๋“ค ์ž…๋‹ˆ๋‹ค.

๊ฐ ํ•จ์ˆ˜๊ฐ’ $f(x)$, $f(x-h)$, $f(x-2h)$๋ฅผ ํ…Œ์ผ๋Ÿฌ ์ „๊ฐœ ํ•ฉ๋‹ˆ๋‹ค.

\[\begin{aligned} f(x) &= f(x) \\ f(x-h) &= f(x) - h f'(x) + \frac{h^2}{2} f''(x) - \cdots \\ f(x-2h) &= f(x) - 2h f'(x) + \frac{4h^2}{2}f''(x) - \cdots \\ \end{aligned}\]

์ด์ œ ์ด๊ฒƒ์„ ๋„ํ•จ์ˆ˜๋ฅผ ๊ทผ์‚ฌํ•˜๋Š” ์‹์— ๋Œ€์ž…ํ•ฉ๋‹ˆ๋‹ค.

\[\begin{aligned} f(x)' &= a f(x) + bf(x-h) + cf(x-2h) \\ &= (a + b + c) f(x) + ( - bh - 2ch) f'(x) + (\frac{bh^2}{2} + \frac{4ch^2}{2}) f''(x) + \cdots \end{aligned}\]

์ด์ œ ๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜์˜ ์„ ํ˜• ์‹œ์Šคํ…œ์„ ํ’€์–ด์„œ, $a, b, c$์˜ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.

\[\begin{aligned} a + b + c &= 0 \\ -bh - 2ch &= 1 \\ bh^2 + 4ch^2 = 0 \end{aligned}\]

์„ ํ˜• ์‹œ์Šคํ…œ์„ ํ’€์–ด์ค๋‹ˆ๋‹ค. ๋งˆ์ง€๋ง‰ ๋ฐฉ์ •์‹์„ ์ด์šฉํ•ด $b = - 4c$๋ผ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๊ณ , ์ด๋ฅผ ๋‘๋ฒˆ์งธ ๋ฐฉ์ •์‹์— ๋Œ€์ž… ํ•ฉ๋‹ˆ๋‹ค.

\[4ch - 2ch = 2ch = 1\]

๋”ฐ๋ผ์„œ, $c = 1 / (2h)$์ด๊ณ , ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $b = - 2 / h$ ์ž…๋‹ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ $a$๋ฅผ ๊ตฌํ•˜๋ฉด, $a = - b - c = 3/(2h)$๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.

๊ฒฐ๊ณผ๋ฅผ ์ฒ˜์Œ์˜ ๋„ํ•จ์ˆ˜ ๊ทผ์‚ฌ์‹์— ๋Œ€์ž… ํ•ฉ๋‹ˆ๋‹ค.

\[\begin{aligned} f'(x) &= a f(x) + bf(x-h) + cf(x-2h) \\ &= \frac{3}{2h} f(x) - \frac{2}{h} f(x-h) + \frac{1}{2h} f(x-2h) \\ &= \frac{3f(x) - 4f(x-h) + f(x-2h)}{2h} \end{aligned} \\\]

Second-order approximation

(๋ญ”๊ฐ€ ์ญ‰โ€ฆ ์ ๊ธฐ๋Š” ํ–ˆ๋Š”๋ฐ, ๋ญ”๊ฐ€ ํ๋ฆ„์ด ์ด์ƒํ•˜๋„คโ€ฆ GPTํ•œํ…Œ ๋ฌผ์–ด๋ณด๊ณ  ๋‹ค์‹œ ์ดํ•ดํ•ด์•ผ ํ•  ๋“ฏ)

๋ฏธ์ •๊ณ„์ˆ˜๋ฒ•๋Š” ๋‹จ์ˆœํžˆ ํ…Œ์ผ๋Ÿฌ ์ „๊ฐœ์™€ ์ด๋ฅผ ํ†ตํ•ด ์„ ํ˜• ์‹œ์Šคํ…œ์„ ์ž˜ ์„ธ์›Œ์„œ ํ‘ธ๋Š” ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์—, ์‰ฌ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ• ์ž…๋‹ˆ๋‹ค.

๊ทธ๋ž˜์„œ ๊ฐ™์€ ์ ‘๊ทผ๋ฒ•์œผ๋กœ 2์ฐจ ๋„ํ•จ์ˆ˜์— ๋Œ€ํ•œ ๊ทผ์‚ฌ์‹๋„ ์œ ๋„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ค์ œ๋กœ $f(x-h)$, $f(x)$, $f(x+h)$ ์„ธ ์ ์„ ๊ฐ€์ง€๊ณ  ์ค‘์•™์—์„œ ๊ทผ์‚ฌํ•œ 2์ฐจ ๋„ํ•จ์ˆ˜๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ๊ณ„์‚ฐ ๋ฉ๋‹ˆ๋‹ค.

\[D^2 f(x) = \frac{D_{+}f(x) + D_{-}f(x)}{2}\]

์ด๋•Œ, $D_{+}f(x)$๋Š” ํ…Œ์ผ๋Ÿฌ ์ „๊ฐœ๋ฅผ ์ ์ ˆํžˆ ์ˆ˜ํ–‰ํ•˜๋ฉด, ์•„๋ž˜์™€ ๊ฐ™์Œ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

\[D_{+}f(x) = \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{1}{2} h f''(x) + \frac{1}{6}h^2 f^{\prime\prime\prime} (x) + O(h^3)\]

์ด์ œ ์ด๊ฒƒ์„ ๊ณ„์‚ฐํ•ด๋ณด๋ฉด,

\[D^2 f(x) = \frac{(f(x-h) - f(x)) / h + (f(x+h) - f(x)) / h}{2} = \frac{ f'(x) + \cancel{\frac{1}{2} h f''(x)} + \frac{1}{6}h^2 f^{\prime\prime\prime} (x) + \cancel{O(h^3)} + f'(x) - \cancel{\frac{1}{2} h f''(x)} + \frac{1}{6}h^2 f^{\prime\prime\prime} (x) - \cancel{O(h^3)} }{2} = f\]