์ปดํ“จํ„ฐ์—์„œ ์ •๊ทœ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋Š” ๋žœ๋ค ๋‚œ์ˆ˜๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๐Ÿ–ฅ๏ธ

5 minute read

2025๋…„ ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ ์ˆ˜์—…์ธ โ€œํ™•๋ฅ ๊ฐœ๋ก (MATH431)โ€ ์ˆ˜์—…์—์„œ ๋ฐฐ์šด ๊ฒƒ๊ณผ ๊ณต๋ถ€ํ•œ ๊ฒƒ์„ ์ •๋ฆฌํ•œ ํฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ „์ฒด ํฌ์ŠคํŠธ๋Š” Introduction to Probability Theory์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค ๐ŸŽฒ

๋“ค์–ด๊ฐ€๋ฉฐ

์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ ์†Œ๊ฐœํ•˜๋Š” ๊ฒƒ์€ ์ปดํ“จํ„ฐ ๋žœ๋ค ๋‚œ์ˆ˜์™€ ๊ด€๋ จ ์žˆ์Šต๋‹ˆ๋‹ค! (๋ฒŒ์จ ์žฌ๋ฐŒ์Œ ใ…‹ใ…‹)

(์ด๊ฒƒ๋„ ๋…ผ์Ÿ์ด ์žˆ์ง€๋งŒ) ์™„์ „ํžˆ ๋žœ๋ค ํ•˜๋‹ค๋Š”๊ฒŒ ๋ฌด์—‡์ผ๊นŒ์š”? ๊ทธ๋ฆฌ๊ณ  ์ปดํ“จํ„ฐ๋Š” ๊ทธ ๋žœ๋ค ๋‚œ์ˆ˜๋ฅผ ์–ด๋–ป๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฑธ๊นŒ์š”?

๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ ์ƒํ™œ์—์„œ ์ •๋ง์ •๋ง ์œ ์š”ํ•œ ๋ถ„ํฌ์ธ โ€œ์ •๊ทœ ๋ถ„ํฌโ€๋ฅผ ๋”ฐ๋ฅด๋Š” ๋žœ๋ค ๋‚œ์ˆ˜๋ฅผ ์ปดํ“จํ„ฐ์—์„œ ๋งŒ๋“œ๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ• ๊นŒ์š”?

์ด ๊ธฐ๋ฒ•์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•œ ์‚ฌ๋žŒ๋“ค์ด Box์™€ Muller์ด๊ณ , 1958๋…„ ์ด ๊ธฐ๋ฒ•์„ ์ถœ์‹œํ–ˆ์Šต๋‹ˆ๋‹ค. Box-Muller์˜ ์ด ๊ธฐ๋ฒ•์€ ์ดˆ๊ธฐ ์ปดํ“จํ„ฐ ๊ณ„์‚ฐํ•™์˜ ๊ธฐ๋ฐ˜์ด ๋˜์—ˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค!

Box-Muller Transform

๋ฐ”๋กœ ์–ด๋–ป๊ฒŒ ํ•˜๋Š”์ง€ ์‚ดํŽด๋ด…์‹œ๋‹ค! ์ด ๊ธฐ๋ฒ•์€ Uniform Distribution์„ ๋”ฐ๋ฅด๋Š” ๋‚œ์ˆ˜ ๋‘ ๊ฐœ๋ฅผ ์ด์šฉํ•ด, ํ‘œ์ค€ ์ •๊ทœ ๋ถ„ํฌ $N(0, 1)$์„ ๋”ฐ๋ฅด๋Š” ๋‚œ์ˆ˜๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

For two independent Uniform Random variables $U_1, U_2 \sim \text{Unif}(0, 1)$

The below transformed random variable follows Standard Normal distributions.

\[\begin{aligned} Z_0 &= \sqrt{-2 \ln U_1} \cdot \cos (2 \pi \, U_2) \\ Z_1 &= \sqrt{-2 \ln U_1} \cdot \sin (2 \pi \, U_2) \end{aligned}\]

Transform Uniform Distribution to Exponential Distribution

Box-Muller Transform์„ ์ฆ๋ช…ํ•˜๊ธฐ ์ „์—, Uniform ๋ถ„ํฌ๋ฅผ $X \sim \text{EXP}(\lambda)$์ธ ๋ถ„ํฌ๋กœ ๋ฐ”๊พธ๋Š” ๊ณผ์ •์„ ๋จผ์ € ํ•ด๋ด…์‹œ๋‹ค!

์ง€์ˆ˜ ๋ถ„ํฌ์˜ PDF๋Š” ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[f_X(x) = \lambda e^{-\lambda x} \quad x \ge 0\]

์ ๋ถ„ํ•œ CDF๋Š”

\[F_X(x) = 1 - e^{-\lambda x}\]

์—ญ๋ณ€ํ™˜ ์ƒ˜ํ”Œ๋ง์„ ์œ„ํ•ด CDF์˜ ์—ญํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ํ™•๋ฅ ๋ณ€์ˆ˜ $U$๋ฅผ $X$๋กœ ํ‘œํ˜„ํ•ด๋ด…์‹œ๋‹ค.
(์ฐธ๊ณ ๋กœ CDF๋ฅผ ์“ฐ๋Š” ์ด์œ ๋Š” CDF๋Š” ๋‹จ์กฐ์ฆ๊ฐ€ ํ•จ์ˆ˜์ด๊ธฐ ๋•Œ๋ฌธ์— (์ผ๋ฐ˜ํ™”๋œ) ์—ญํ•จ์ˆ˜๊ฐ€ ํ•ญ์ƒ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.)

\[\begin{aligned} U &= 1 - e^{-\lambda X} \\ e^{-\lambda X} &= 1 - U \\ - \lambda X &= \ln (1 - U) \\ X &= - \frac{1}{\lambda} \cdot \ln(1 - U) \end{aligned}\]

์ฆ‰, Uniform ๋ถ„ํฌ๋กœ ์ง€์ˆ˜ ๋ถ„ํฌ๋ฅผ ์œ ๋„ํ•˜๋ ค๋ฉด, ์•„๋ž˜์™€ ๊ฐ™์ด ๋ณ€ํ™˜ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค!

\[X = - \frac{1}{\lambda} \cdot \ln(1 - U)\]

์ด๋•Œ, $(1 - U) \sim \text{Unif}(0, 1)$๋„ ์„ฑ๋ฆฝํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์œ„์˜ ์‹์„ ๋‹จ์ˆœํ™” ํ•˜์—ฌ, ์•„๋ž˜์™€ ๊ฐ™์ด ์ ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

\[X = - \frac{1}{\lambda} \cdot \ln U\]

Derivation

2๋ณ€์ˆ˜ ์ •๊ทœ ๋ถ„ํฌ๋Š” ์•„๋ž˜์˜ PDF๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

\[f(z_0, z_1) = \frac{1}{2\pi} \cdot \exp(- (z_0^2 + z_1^2)/2)\]

์ด PDF์— ๊ทน์ขŒํ‘œ ๋ณ€ํ™˜์„ ํ•ด๋ด…์‹œ๋‹ค.

\[\begin{aligned} z_0 &= r \cos \theta \\ z_1 &= r \sin \theta \end{aligned}\]

์ด๋•Œ, $r \in [0, \inf)$์ด๊ณ , $\theta \in [0, 2\pi)$ ์ž…๋‹ˆ๋‹ค.

์ขŒํ‘œ ๋ณ€ํ™˜์— ์˜ํ•ด Jacobian $\vert \det J \, \vert = r$ ์ž…๋‹ˆ๋‹ค.

๋”ฐ๋ผ์„œ, ํ•จ์ˆ˜ $f(r, \theta)$๋Š”

\[f(r, \theta) = \frac{1}{2\pi} \exp(-r^2/2) \cdot r\]

์ด๊ฒƒ์€ ๋‘ ํ™•๋ฅ ๋ณ€์ˆ˜ $\theta$์™€ $r^2$์˜ ๊ฒฐํ•ฉ๋ถ„ํฌ๋กœ Marginal ๋ถ„ํฌ๋งŒ ๋ชจ์œผ๋ฉด ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[\begin{aligned} \Theta & \sim \text{Unif}(0, 2 \pi) \\ R^2 & \sim \text{EXP}(1/2) \end{aligned}\]

์ €๋Š” $r^2$์˜ ๋ถ„ํฌ๊ฐ€ ์ž˜ ์ดํ•ด๊ฐ€ ์•ˆ ๋˜์—ˆ๋Š”๋ฐ์š”.

\[f_R(r) = r \cdot \exp(-r^2/2)\]

๋ผ๋Š” ํ™•๋ฅ  ๋ถ„ํฌ์—์„œ $R^2 = X$๋กœ ๋ณ€์ˆ˜ ์น˜ํ™˜์„ ํ•˜๋ฉด,

\[r = \sqrt{x}, \quad 2 r \cdot dr = dx\] \[f_R(r) = \exp(-x/2) \cdot \frac{1}{2} = f_X(x)\]

๋”ฐ๋ผ์„œ, $R^2 = X \sim \text{EXP}(1/2)$๊ฐ€ ๋ฉ๋‹ˆ๋‹ค!


์ด์ „ ๋ฌธ๋‹จ์—์„œ ํ–ˆ๋˜, ์ง€์ˆ˜ ๋ถ„ํฌ๋ฅผ Uniform ๋ถ„ํฌ๋กœ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์˜ํ•ด

\[r = \sqrt{x} = \sqrt{- 2 \ln U}\]

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ $\theta$์—๋„ $U_2$์— ๋Œ€ํ•œ ์—ญ๋ณ€ํ™˜์„ ํ•˜๋ฉด,

\[\Theta = 2 \pi \cdot U_2\]

์ด์ œ, ๋ชจ๋“  ๊ฒƒ์„ ์ข…ํ•ฉํ•ด ์ •๊ทœ๋ถ„ํฌ ํ™•๋ฅ ๋ณ€์ˆ˜์— ์ ์šฉํ•ด๋ด…์‹œ๋‹ค.

\[\begin{alignat*}{3} z_0 &= r \cos \theta &=& \sqrt{-2 \ln U_1} \cdot \cos (2 \pi \cdot U_2) \\ z_1 &= r \sin \theta &=& \sqrt{-2 \ln U_1} \cdot \sin (2 \pi \cdot U_2) \end{alignat*}\]

$\blacksquare$

Experiments

์œ ํŠœ๋ธŒ์—์„œ Box-Muller Transform์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์˜ฌ๋ฆฐ ์ข‹์€ ์˜์ƒ์ด ์žˆ์–ด์„œ ์ฒจ๋ถ€ ํ•ฉ๋‹ˆ๋‹ค!