5 minute read

์ˆ˜ํ•™๊ณผ ๋ณต์ˆ˜์ „๊ณต์„ ์œ„ํ•ด ์กธ์—… ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ์— โ€œ์ˆ˜์น˜ํ•ด์„๊ฐœ๋ก โ€ ์ˆ˜์—…์„ ๋“ฃ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜ํ•™๊ณผ ์กธ์—…์‹œํ—˜๋„ ๊ฒธ์‚ฌ๊ฒธ์‚ฌ ์ค€๋น„ํ•  ๊ฒธ ํ™”์ดํŒ… ํ•ด๋ด…์‹œ๋‹ค!! ์ „์ฒด ํฌ์ŠคํŠธ๋Š” โ€œNumerical Analysisโ€œ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋“ค์–ด๊ฐ€๋ฉฐ

์ˆ˜์น˜์  ์ ๋ถ„์€ ์šฐ๋ฆฌ๊ฐ€ ํ•จ์ˆ˜ $f(x)$์™€ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ $(x_i, y_i)$๋“ค๋งŒ ์•Œ๊ณ  ์žˆ์„ ๋•Œ, ์ด๊ฒƒ๋“ค์„ ์‚ฌ์šฉํ•ด ์ •์ ๋ถ„ $\int f(x)$์˜ ๊ฐ’์„ ๊ทผ์‚ฌํ•˜๋Š” ๊ฒƒ ์ž…๋‹ˆ๋‹ค.

์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ๋Š” ์ฃผ์–ด์ง„ ํ•จ์ˆ˜ $f(x)$์˜ ๋ถ€์ •์ ๋ถ„ $\int_a^b f(x)\,dx$๋ฅผ ์ˆ˜์น˜์  ์ ๋ถ„์œผ๋กœ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค. ์ˆ˜์น˜์ ์œผ๋กœ ๋ถ€์ •์ ๋ถ„์€ ์•„๋ž˜์™€ ๊ฐ™์€ ๊ผด์„ ๊ฐ–๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

\[\int_a^b f(x) \, dx = \sum_{i=0}^n a_i f(x_i)\]

์ด๋•Œ, ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ์˜ ์ง‘ํ•ฉ $\left\{ x_0, \dots, x_n \right\}$์€ $[a, b]$ ์‚ฌ์ด์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์ ๋“ค ์ž…๋‹ˆ๋‹ค.

Trapezoid Rule

โ€œTrapezoidโ€๋Š” ์‚ฌ๋‹ค๋ฆฌ๊ผด์ด๋ผ๋Š” ๋œป ์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ์‹์€ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๋ฅผ ๋‹จ 2๊ฐœ๋งŒ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

๊ทธ๋ž˜์„œ

  • $x_0 = a$
  • $x_1 = b$
  • $h = (b-a)$

๋กœ ๊ตฌ์„ฑ ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๊ฑธ๋กœ Langrange ๋ณด๊ฐ„ ํ•จ์ˆ˜๋ฅผ ๊ตฌํ•˜๋ฉด

\[P(x) = \frac{(x-x_1)}{(x_0 - x_1)} f(x_0) + \frac{(x-x_0)}{(x_1 - x_0)} f(x_1)\]

์ด๋Ÿฐ Linear Lagrange Polynomial์ด ๋‚˜์˜ต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๊ฑธ ์ ๋ถ„ํ•˜๋ฉด,

\[\int_a^b f(x) \, dx = \int_{x_0 = a}^{x_1 = b} \left[ \frac{(x-x_1)}{(x_0 - x_1)} f(x_0) + \frac{(x-x_0)}{(x_1 - x_0)} f(x_1) \right] \, dx + \text{Err Term}\]

์—๋Ÿฌ ํ…€์€ ๋‚˜์ค‘์— ๋ถ„์„ํ•˜๊ณ  ์ผ๋‹จ ๊ณ„์† ์ž‘์„ฑํ•ด๋ด…์‹œ๋‹ค.

\[\begin{aligned} \int_a^b f(x) \, dx \approx &= \left[ \frac{(x-x_1)^2}{2(x_0 - x_1)} f(x_0) + \frac{(x-x_0)^2}{2(x_1 - x_0)} f(x_1) \right]_{x_0}^{x_1} \\ &= \frac{x_1 - x_0}{2} [f(x_0) + f(x_1)] \\ &= \frac{f(x_0) + f(x_1)}{2} h \end{aligned}\]

์ฆ‰, ์‚ฌ๋‹ค๋ฆฌ๊ผด์˜ ๋„“์ด๋กœ ์ˆ˜์น˜์  ์ ๋ถ„์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค! ์ •๋ง ์‹ฌํ”Œํ•œ ์ ‘๊ทผ๋ฒ•!! ใ…‹ใ…‹ใ…‹

Simpsonโ€™s Rule

์ด๋ฒˆ์—๋Š” ๊ท ๋“ฑํ•˜๊ฒŒ ๋ถ„ํฌ๋œ 3๊ฐœ์˜ ์ ์„ ์‚ฌ์šฉํ•ด ์ ๋ถ„ ๊ทผ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

  • $x_0 = a$
  • $x_1 = a + h$
  • $x_2 = b$
  • $h = (b-a)/2$

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ผ๊ทธ๋ž‘์ฃผ ๊ทผ์‚ฌ๋ฅผ ํ•ฉ๋‹ˆ๋‹ค.

\[P_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(x_0) + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}f(x_1) + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(x_2)\]

์ด๋•Œ, ๊ฐ $(x-x_i)(x-x_j)$์— ๋Œ€ํ•œ ์ ๋ถ„์„ ๊ตฌํ•ด์„œ ์‹์„ ์ •๋ฆฌํ•˜๋ ค๊ณ  ํ•˜๋ฉดโ€ฆ ์ง€์˜ฅ์ด ํŽผ์ณ์ง‘๋‹ˆ๋‹ค.. ใ…‹ใ…‹ (์ง์ ‘ ํ•ด๋ด„;;)

๊ฒฐ๋ก ๋ถ€ํ„ฐ ์ ์œผ๋ฉด, ์‹ฌํ”„์Šจ ๋ฐฉ์‹์˜ ์ ๋ถ„ ๊ทผ์‚ฌ๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ์œ ๋„ ๋ฉ๋‹ˆ๋‹ค.

\[\int_{x_0}^{x_2} f(x) \, dx \approx \frac{h}{3} (f(x_0) + 4 f(x_1) + f(x_2))\]

๊ทธ๋ž˜์„œ ์ผ๋ฐ˜์„ฑ์„ ์žƒ์ง€ ์•Š๊ณ (w.l.o.g), $x_1 = 0$๋ฅผ ์„ค์ •ํ•˜๊ณ , $x_0 = -h$, $x_1 = h$๊ฐ€ ๋˜๋Š” ์ˆ˜ํ‰ ์ด๋™ํ•œ ํ•จ์ˆ˜ $g(x)$์— ๋Œ€ํ•ด์„œ ์ ๋ถ„ ๊ทผ์‚ฌ๋ฅผ ๋Œ€์‹  ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

$P_2(x)$๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด ๋‹ค์‹œ ์ž‘์„ฑ ๋ฉ๋‹ˆ๋‹ค.

\[P_2(x) = \frac{(x)(x-h)}{(-h)(-2h)}f(x_0) + \frac{(x+h)(x-h)}{(+h)(-h)}f(x_1) + \frac{(x+h)(x)}{(2h)(h)}f(x_2)\] \[\begin{aligned} \int_{-h}^{h} f(x) \, dx &\approx \int_{-h}^{h} P_2(x) \, dx \\ &= \int_{-h}^{h} \frac{1}{2h^2} \left[ x(x-h)f(x_0) - 2 (x^2 - h^2) f(x_1) + x(x+h) f(x_2) \right] \, dx \\ &= \int_{-h}^{h} \frac{1}{2h^2} \left[ x^2 f(x_0) - xhf(x_0) - 2x^2 f(x_1) + 2h^2 f(x_1) + x^2 f(x_2) + xh f(x_2) \right] \, dx \\ \end{aligned}\]

์—ฌ๊ธฐ์—์„œ ๊ธฐํ•จ์ˆ˜๋Š” ๋Œ€์นญ์„ฑ์œผ๋กœ ์ธํ•ด ์ ๋ถ„๊ฐ’์ด 0์ด ๋ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ๋“ค์„ ๋ฒ„๋ ค๋‚ด๋ฉด

\[\begin{aligned} \int_{-h}^{h} f(x) \, dx &\approx \int_{-h}^{h} P_2(x) \, dx \\ &= \int_{-h}^{h} \frac{1}{2h^2} \left[ x^2 f(x_0) - 2x^2 f(x_1) + 2h^2 f(x_1) + x^2 f(x_2) \right] \, dx \\ \end{aligned}\]

๊ทธ๋ฆฌ๊ณ  ์‹ค์ œ๋กœ ์ ๋ถ„์„ ์ˆ˜ํ–‰ํ•ด๋ด…์‹œ๋‹ค! ์ด ์ ๋ถ„์€ (๋น„๊ต์ ) ๊ฐ„๋‹จํ•ฉ๋‹ˆ๋‹ค!

\[\begin{aligned} \int_{-h}^{h} f(x) \, dx &\approx \int_{-h}^{h} P_2(x) \, dx \\ &= \frac{1}{2h^2} \left[ \frac{2}{3}h^3 f(x_0) - \frac{4}{3}h^3 f(x_1) + 4 h^3 f(x_1) + \frac{2}{3}h^3 f(x_2) \right] \\ &= \frac{h}{3} f(x_0) - \frac{2h}{3}f(x_1) + 2hf(x_1) + \frac{h}{3}f(x_2) \\ &= \frac{h}{3}\left[ f(x_0) + 4f(x_1) + f(x_2) \right] \end{aligned}\]

์™€์šฐ!! ์‹ฌํ”„์Šจ ๊ณต์‹์ด ์œ ๋„ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค ใ…Žใ…Ž ์ ๋ถ„์€ ์ˆ˜ํ‰ ์ด๋™ํ•œ ํ•จ์ˆ˜์—์„œ ์ˆ˜ํ–‰ํ•˜๋“  ์›๋ž˜ ์œ„์น˜์—์„œ ์ˆ˜ํ–‰ํ•˜๋“  ์ƒ๊ด€ ์—†์Šต๋‹ˆ๋‹ค! ๊ทธ๋ž˜์„œ ์ด๊ฒƒ ๊ทธ๋Œ€๋กœ ๊ฒฐ๊ณผ๋กœ ์‚ฌ์šฉํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค!

4-points case

๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๊ฐ€ 2๊ฐœ, 3๊ฐœ๋กœ ๋Š˜์–ด๋‚ฌ๋Š”๋ฐ, 4๊ฐœ์ธ ๊ฒฝ์šฐ๋Š” ์–ด๋–ป๊ฒŒ ๋ ๊นŒ์š”? ์ด ๊ฒฝ์šฐ๋„ ๊ณต์‹์ด ์žˆ์Šต๋‹ˆ๋‹ค.

์ด๊ฒƒ์€ โ€œSimpsonโ€™s 3/8 Ruleโ€๋ผ๊ณ  ํ•˜๋ฉฐ, ๊ณต์‹์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[\int_{x_0}^{x_3} f(x) \, dx \approx \frac{3h}{8} (f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3))\]

๊ณต์‹์— ๋Œ€ํ•œ ์œ ๋„๋Š” 3-point์—์„œ ํ–ˆ๋˜ ๊ฒƒ์ฒ˜๋Ÿผ ํ•จ์ˆ˜๋ฅผ ํ‰ํ–‰์ด๋™ ํ•œ ํ›„์— ์ˆ˜ํ–‰ํ•ด์ฃผ๋ฉด ๋œ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

Error Analysis

Trapezoie Rule

Simpsonโ€™s Rule