์†Œ๋น„์ž ๋ฌธ์ œ์˜ ํ•ด๊ฐ€ ์ง‘ํ•ฉ ๋‚ด๋ถ€์— ์ƒ๊ธฐ๋Š”์ง€, ๊ฒฝ๊ณ„(์ถ•)์— ์ƒ๊ธฐ๋Š”์ง€์— ๋Œ€ํ•ด.

4 minute read

์กธ์—…์„ ์œ„ํ•ด ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ์— โ€œ๋ฏธ์‹œ๊ฒฝ์ œํ•™โ€ ์ˆ˜์—…์„ ๋“ฃ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ฒฝ์ œํ•™์›๋ก  ์ˆ˜์—…์„ ์žฌ๋ฐŒ๊ฒŒ ๋“ค์–ด์„œ ๊ฒฝ์ œ ์ชฝ์ด๋ž‘ ๊ถํ•ฉ์ด ์ข‹์€ ์ค„ ์•Œ๊ณ  ์‹ ์ฒญ ํ–ˆ๋Š”๋ฐ, ์›ฌ๊ฑธโ€ฆ ์ด ๊ณผ๋ชฉ์€ ์‚ฌ์‹ค์ƒ ์ˆ˜ํ•™๊ณผ ๊ณผ๋ชฉ ์ด์—ˆ์Šต๋‹ˆ๋‹ค.. ใ…‹ใ…‹ ๊ทธ๋ž˜๋„ ์ˆ˜ํ•™๊ณผ ๋ณต์ˆ˜์ „๊ณต๋„ ํ•˜๊ณ  ์žˆ์œผ๋‹ˆ, ์ด ์ˆ˜์—…๋„ ํž˜๋‚ด์„œ ์ž˜ ๋“ค์–ด๋ด…์‹œ๋‹ค! ์ „์ฒด ํฌ์ŠคํŠธ๋Š” โ€œ๋ฏธ์‹œ๊ฒฝ์ œํ•™โ€ ์นดํ…Œ๊ณ ๋ฆฌ์—์„œ ํ™•์ธํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋“ค์–ด๊ฐ€๋ฉฐ

๋ฒˆ๋“ค ์„ ํ˜ธ์— ๋Œ€ํ•œ โ€œ๋ฏธ๋ถ„๊ฐ€๋Šฅ์„ฑ(differentiability)โ€œ์— ๋Œ€ํ•ด ๋‹ค๋ฃจ๋ฉด์„œ, ํ•œ๊ณ„๋Œ€์ฒด์œจ(MRS)์— ๋Œ€ํ•ด์„œ๋„ ์‚ดํŽด๋ณด์•˜์Šต๋‹ˆ๋‹ค.

MRS๋Š” ์–ด๋ ค์šด๊ฒŒ ์•„๋‹ˆ๊ณ , ๊ทธ๋ƒฅ ๋ฌด์ฐจ๋ณ„ ๊ณก์„ ์—์„œ์˜ ๊ธฐ์šธ๊ธฐ ์˜€์ฃ !! ใ…Žใ…Ž MRS๋Š” ํ•ด๋‹น ์ง€์ ์—์„œ์˜ local valuation์˜ ๋น„์œจ๋กœ ๊ตฌ์„ฑ ๋ฉ๋‹ˆ๋‹ค. ์ด๋•Œ, local valuation์€ ๊ทธ๋ƒฅ ํšจ์šฉ์˜ ํŽธ๋ฏธ๋ถ„๊ฐ’์„ ๋งํ•ฉ๋‹ˆ๋‹ค ใ…Žใ…Ž

\[\text{MRS} = - \frac{v_1(x)}{v_2(x)} = \frac{MU_{x_1}}{MU_{x_2}}\]

๊ทธ๋ฆฌ๊ณ  MRS๋Š” $x_1$์„ ํ•œ ๋‹จ์œ„ ๋” ์†Œ๋น„ํ•˜๊ธฐ ์œ„ํ•ด, $x_2$๋ฅผ ์–ผ๋งŒํผ โ€œ์ค„์—ฌ์•ผโ€ ํ•˜๋Š”์ง€๋ฅผ ์ˆ˜์น˜์ ์œผ๋กœ ํ‘œํ˜„ํ•ฉ๋‹ˆ๋‹ค.

Optimal Solution and MRS

์†Œ๋น„์ž๊ฐ€ ์ฃผ์–ด์ง„ ์˜ˆ์‚ฐ ์ง‘ํ•ฉ ์•ˆ์—์„œ ์ตœ์ ํ•ด๋ฅผ ์„ ํƒํ•  ๋•Œ, ๊ทธ ์œ„์น˜์— ๋”ฐ๋ผ์„œ MRS์™€์˜ ๊ด€๊ณ„๊ฐ€ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค!

Internal Solution

๋งŒ์•ฝ ์ตœ์ ํ•ด $x^{\ast}$๊ฐ€ $x_1^{\ast}, x_2^{\ast} > 0$๋ผ๋ฉด, ์•„๋ž˜์˜ ๋“ฑ์‹์ด ์„ฑ๋ฆฝ ํ•ฉ๋‹ˆ๋‹ค.

\[\text{MRS}(x^{\ast}) = p_1 / p_2\]

์ด๊ฒƒ์€ ๋ฒ„์ง“ ๋ผ์ธ๊ณผ ์ ‘ํ•˜๋Š” ๋ฌด์ฐจ๋ณ„ ๊ณก์„  ์œ„์—์„œ ์ตœ์ ํ•ด๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค๊ณ  ํ•ด์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Boundary Solution

๋ฐ˜๋ฉด์— ์ตœ์ ํ•ด๊ฐ€ ๊ฒฝ๊ณ„์ธ $x_1^{\ast} = 0$ ๋˜๋Š” $x_2^{\ast} = 0$ ์œ„์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด ๊ฒฝ์šฐ๋Š” ๋ฒ„์ง“ ๋ผ์ธ๊ณผ ์ ‘ํ•˜๋Š” ๋ฌด์ฐจ๋ณ„ ๊ณก์„ ์ด ์กด์žฌํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฐ ์ƒํ™ฉ์ด ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค.

์ด ๊ฒฝ์šฐ, MRS์™€ ๊ตํ™˜๋น„ ์‚ฌ์ด์— ๋ถ€๋“ฑ์‹์ด ์„ฑ๋ฆฝํ•ด๋„, ํ•ด์˜ ์ตœ์ ์„ฑ์ด ์ถฉ์กฑ ๋ฉ๋‹ˆ๋‹ค.

\[\text{MRS}(x^{\ast}) < p_1 / p_2\]

Boundary Examples

์ฒ˜์Œ์—๋Š” ๋‚ด๋ถ€ํ•ด์˜ ์˜ˆ์‹œ๊ฐ€ ๋” ์‰ฌ์šธ๊ฑฐ๋ผ๊ณ  ์ƒ๊ฐํ–ˆ๋Š”๋ฐ์š”! ๊ณต๋ถ€๋ฅผ ํ•ด๋ณด๋‹ˆ, ๊ฒฝ๊ณ„ํ•ด์˜ ์˜ˆ์‹œ๋ฅผ ์ฐพ๋Š”๊ฒŒ ํ›จ์”ฌ ์‰ฝ๊ณ  ์ดํ•ด๋„ ๋” ์‰ฝ์Šต๋‹ˆ๋‹ค ^^

Perfect Substitutes

ํšจ์šฉ ํ•จ์ˆ˜๊ฐ€ $u(x) = x_1 + x_2$๋กœ ์ฃผ์–ด์กŒ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋‘ ์žฌํ™”์˜ ๊ฐ€๊ฒฉ๋น„๋Š” $p_1:p_2 = 1:2$, ์ฆ‰ ์žฌํ™”1์ด ๋” ์ €๋ ดํ•ฉ๋‹ˆ๋‹ค.

๊ทธ๋Ÿฌ๋ฉด, ์†Œ๋น„์ž๋Š” ์˜ˆ์‚ฐ์ด ์–ผ๋งˆ์žˆ๋“ ์ง€ ์ƒ๊ด€์—†์ด ๋ชจ๋“  ์˜ˆ์‚ฐ์„ $x_1$์— ์Ÿ์•„๋ถ€์–ด $u(x)$๋ฅผ ๊ทน๋Œ€ํ™” ํ•˜๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ตœ์ ํ•ด๋Š” $(x^{\ast}_1, 0)$์œผ๋กœ ๊ฒฝ๊ณ„ํ•ด์—์„œ ๋งŒ๋“ค์–ด์ง‘๋‹ˆ๋‹ค.

Strong Preference

์ด๋ฒˆ์—๋Š” ํšจ์šฉ ํ•จ์ˆ˜๊ฐ€ $u(x) = x_1$์œผ๋กœ ์˜ค์ง ์žฌํ™”1์— ๋Œ€ํ•ด์„œ๋งŒ ํšจ์šฉ์„ ์ค๋‹ˆ๋‹ค. ์žฌํ™”2๋Š” ์ „ํ˜€ ๊ด€์‹ฌ์ด ์—†์Šต๋‹ˆ๋‹ค.

์ด ๊ฒฝ์šฐ ๊ฐ€๊ฒฉ๋น„์™€ ์ƒ๊ด€ ์—†์ด, ์†Œ๋น„์ž๋Š” ๋ชจ๋“  ์˜ˆ์‚ฐ์„ ์žฌํ™” 1์— ์ตœ๋Œ€ํ•œ ๋งŽ์ด ์†Œ๋น„ํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ตœ์ ํ•ด๋Š” $(x^{\ast}_1, 0)$์œผ๋กœ ๊ฒฝ๊ณ„ํ•ด์—์„œ ๋งŒ๋“ค์–ด์ง‘๋‹ˆ๋‹ค.

Undesirable Goods

๋งŒ์•ฝ ํšจ์šฉ ํ•จ์ˆ˜๊ฐ€ $u(x) = x_1 - x_2$๋ผ๋ฉด, ์žฌํ™”2๋Š” ๊ฐ€์ง€๊ณ  ์žˆ์„์ˆ˜๋ก ์†ํ•ด ์ž…๋‹ˆ๋‹ค.

๋”ฐ๋ผ์„œ, ๊ฐ€๊ฒฉ๋น„์™€ ์ƒ๊ด€ ์—†์ด, ์†Œ๋น„์ž๋Š” ๋ชจ๋“  ์˜ˆ์‚ฐ์„ ์žฌํ™” 1์— ์ตœ๋Œ€ํ•œ ๋งŽ์ด ์†Œ๋น„ํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ตœ์ ํ•ด๋Š” $(x^{\ast}_1, 0)$์œผ๋กœ ๊ฒฝ๊ณ„ํ•ด์—์„œ ๋งŒ๋“ค์–ด์ง‘๋‹ˆ๋‹ค.

Internal Examples

๋‚ด๋ถ€ํ•ด๊ฐ€ ์ƒ๊ธฐ๋Š” ๊ฒฝ์šฐ๋Š”, ๋ณดํ†ต ํšจ์šฉ ํ•จ์ˆ˜๊ฐ€ ์•„๋ž˜์™€ ๊ฐ™์€ ํ˜•ํƒœ์ผ ๋•Œ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค!

\[u(x) = x_1^{\alpha} x_2^{\beta}\]

์ฐธ๊ณ ๋กœ ์ด๋Ÿฐ ํ˜•ํƒœ์˜ ํšจ์šฉ ํ•จ์ˆ˜๋ฅผ โ€œCobb-Douglas(์ฝฅ-๋”๊ธ€๋ผ์Šค)โ€ ํšจ์šฉ ํ•จ์ˆ˜๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค!

Equal Preference

ํšจ์šฉ ํ•จ์ˆ˜๊ฐ€ $u(x) = x_1 x_2$์ด๊ณ , ์˜ˆ์‚ฐ ์ง‘ํ•ฉ์ด $1 \cdot x_1 + 2 \cdot x_2 = 2$๋กœ ์ฃผ์–ด์กŒ์Šต๋‹ˆ๋‹ค.

์ด๋•Œ, ๋ฌธ์ œ๋ฅผ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ํ’€๋ฉด ๋ฉ๋‹ˆ๋‹ค!

$x_1 = 2 - 2 x_2$๋กœ ์ •๋ฆฌํ•˜๊ณ , ์ด๊ฒƒ์„ ํšจ์šฉ ํ•จ์ˆ˜์— ๋Œ€์ž…ํ•˜๋ฉด,

\[u(x) = (2 - 2 x_2) x_2 = 2 x_2 - 2 x_2^2\]

์ตœ๋Œ“๊ฐ’์„ ์ฐพ๊ธฐ ์œ„ํ•ด ๋ฏธ๋ถ„๊ฐ’์ด 0์ด ๋˜๋Š” ์ง€์ ์„ ์ฐพ์Šต๋‹ˆ๋‹ค.

\[\frac{u(x)}{dx_2} = 2 - 4 x_2 = 0\]

๊ทธ๋Ÿฌ๋ฉด, $x_2 = 1/2$๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ , $x_1 = 1$์ด ๋ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ตœ์ ํ•ด๋Š”

\[x^{\ast} = (1, 1/2)\]

์ด ์ตœ์ ํ•ด๋Š” (์ •์˜์— ๋”ฐ๋ผ) โ€œ๋‚ด๋ถ€ํ•ดโ€์ž…๋‹ˆ๋‹ค!

Perfect Complementary

์ด๋ฒˆ์—๋Š” ํšจ์šฉ ํ•จ์ˆ˜๊ฐ€ ๋ฏธ๋ถ„ ๋ถˆ๊ฐ€๋Šฅ ํ•˜์ง€๋งŒ, ๋‚ด๋ถ€ํ•ด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋Š” ๊ฒฝ์šฐ ์ž…๋‹ˆ๋‹ค.

์™„์ „ ๋ณด์™„์žฌ๋Š” ํšจ์šฉ ํ•จ์ˆ˜๊ฐ€ $u(x) = \min(x_1, x_2)$์ž…๋‹ˆ๋‹ค. ์ด ๊ฒฝ์šฐ, ์ตœ์ ํ•ด๋Š” ๊ผญ์ง“์ ์—์„œ ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ์ด ์ ์€ โ€œ๋‚ด๋ถ€ํ•ดโ€์ž…๋‹ˆ๋‹ค!

๋งบ์Œ๋ง

๋‹ค์Œ ํฌ์ŠคํŠธ์—์„  ์ˆ˜์š” ํ•จ์ˆ˜ $x(B)$์˜ ํ•ฉ๋ฆฌ์„ฑ(Rationality)์— ๋Œ€ํ•ด์„œ ๋‹ค๋ฃน๋‹ˆ๋‹ค!

โžก๏ธ Rational Demand Functions