10 minute read

์ˆ˜ํ•™๊ณผ ๋ณต์ˆ˜์ „๊ณต์„ ์œ„ํ•ด ์กธ์—… ๋งˆ์ง€๋ง‰ ํ•™๊ธฐ์— โ€œ์ˆ˜์น˜ํ•ด์„๊ฐœ๋ก โ€ ์ˆ˜์—…์„ ๋“ฃ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜ํ•™๊ณผ ์กธ์—…์‹œํ—˜๋„ ๊ฒธ์‚ฌ๊ฒธ์‚ฌ ์ค€๋น„ํ•  ๊ฒธ ํ™”์ดํŒ… ํ•ด๋ด…์‹œ๋‹ค!! ์ „์ฒด ํฌ์ŠคํŠธ๋Š” โ€œNumerical Analysisโ€œ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋“ค์–ด๊ฐ€๋ฉฐ

โ€œQuadrature(๊ตฌ์ ๋ฒ•)โ€œ๋ผ๋Š” ์ฒ˜์Œ ๋ณด๋Š” ๋‹จ์–ด๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ โ€œ์ ๋ถ„โ€์„ ๋ถ€๋ฅด๋ฉด ์˜› ํ‘œํ˜„์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

๋‰ดํ„ด-์ฝ”์ธ  ๋ฐฉ๋ฒ•์€ ๋“ฑ๊ฐ„๊ฒฉ์œผ๋กœ ๋ถ„ํฌํ•œ $(n+1)$๊ฐœ์˜ ์ ์„ ์‚ฌ์šฉํ•ด ์ •ํ™•๋„ $n$(ํ™€์ˆ˜) ๋˜๋Š” $(n+1)$(์ง์ˆ˜)๋ฅผ ์–ป์—ˆ์Šต๋‹ˆ๋‹ค.

์ด๋ฒˆ ํฌ์ŠคํŠธ์—์„œ ์‚ดํŽด๋ณด๋Š” Gaussian Quadrature๋Š” ๋˜‘๊ฐ™์ด $(n+1)$๊ฐœ ์ ์„ ์‚ฌ์šฉํ•˜์ง€๋งŒ, ์ •ํ™•๋„๋Š” $(2n+1)$๋กœ ๊ฝค ๋†’์€ ์ •ํ™•๋„๋ฅผ ์–ป์Šต๋‹ˆ๋‹ค! ๊ทธ๋ฆฌ๊ณ  ์ ์˜ ๊ฐ„๊ฒฉ ๋˜ํ•œ โ€œ๋น„๋“ฑ๊ฐ„๊ฒฉโ€์œผ๋กœ ๋ถ„ํฌ ํ•ฉ๋‹ˆ๋‹ค!

Setup

๊ฐ€์šฐ์‹œ์•ˆ ๊ตฌ์ ๋ฒ•์„ ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์ „ ์ž‘์—…์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋จผ์ €, $[a, b]$๋กœ ์„ค์ •๋œ ์ ๋ถ„ ๊ตฌ๊ฐ„์„ $[-1, 1]$๋กœ ๋ฐ”๊ฟ‰๋‹ˆ๋‹ค.

์ด ๊ณผ์ •์€ ๋‹จ์ˆœํžˆ ์„ ํ˜• ๋ณ€ํ™˜(Linear Transformation)์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๋ณ€์ˆ˜๋ฅผ $dx$์—์„œ $dt$๋กœ ์น˜ํ™˜์ด ํ•„์š”ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.

One-point Gaussian Quadrature

๋‹จ 1๊ฐœ ์ ์—์„œ๋งŒ ํ•จ์ˆ˜๊ฐ’์„ ๋ณด๊ณ  ์ ๋ถ„์„ ๊ทผ์‚ฌํ•ฉ๋‹ˆ๋‹ค.

\[\int_{-1}^{1} f(x) \, dx \approx 2 \cdot f(0)\]

$[-1, 1]$์˜ ํ•œ ๊ฐ€์šด๋ฐ ์žˆ๋Š” $x = 0$์˜ ํ•จ์ˆ˜๊ฐ’ $f(0)$๊ณผ ๊ทธ๊ฒƒ์„ ๊ฐ„๊ฒฉ์˜ ๋„“์ด์ธ $2$๋ฅผ ๊ณฑํ•ด์„œ ์ ๋ถ„๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค ใ…‹ใ…‹ใ…‹

๋‹น์—ฐํ•˜๊ฒŒ๋„ 1์  ๊ตฌ์ ๋ฒ•์€ ์ œ๋Œ€๋กœ๋œ ๊ฒฐ๊ณผ๋ฅผ ์–ป์ง€ ๋ชปํ•  ๊ฒƒ ์ž…๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด $f(x) = x^2$์— ๋Œ€ํ•ด ๊ตฌ์ ๋ฒ•์œผ๋กœ ์–ป์€ ๊ฒฐ๊ณผ๋Š”

\[\int_{-1}^{1} x^2 \, dx \approx 2 \cdot f(0) = 2 \cdot 0 = 0\]

๊ทธ๋Ÿฐ๋ฐ, ์‹ค์ œ ์ ๋ถ„ ๊ฒฐ๊ณผ๋Š”

\[\int_{-1}^{1} x^2 \, dx = \left[\frac{x^3}{3}\right]_{-1}^{1} = \frac{1}{3} - \left(- \frac{1}{3}\right) = \frac{2}{3}\]

ํ•˜์ง€๋งŒ, ๋งŒ์•ฝ ํ•จ์ˆ˜๊ฐ€ $x=0$์„ ๊ธฐ์ค€์œผ๋กœ ๋Œ€์นญ์ธ ์ผ์ฐจ ํ•จ์ˆ˜ ์˜€๊ฑฐ๋‚˜, ์ƒ์ˆ˜ ํ•จ์ˆ˜ ์˜€๋‹ค๋ฉด ์ด 1์  ๊ทผ์‚ฌ๋กœ ์ •ํ™•ํ•œ ์ ๋ถ„๊ฐ’์„ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ์„ ๊ฒƒ ์ž…๋‹ˆ๋‹ค!

๊ทธ๋ž˜์„œ 1์  ๊ตฌ์ ๋ฒ•์˜ deg of precision $k$๋Š” $k=0$์ด ๋ฉ๋‹ˆ๋‹ค. ์ƒ์ˆ˜ ํ•จ์ˆ˜์— ๋Œ€ํ•ด์„œ๋งŒ ํ•ญ์ƒ ์ •ํ™•ํ•œ ์ ๋ถ„ ๊ฐ’์„ ์ œ๊ณต ํ•ฉ๋‹ˆ๋‹ค.

Two-point Gaussian Quadrature

์ด๋ฒˆ์—๋Š” 2๊ฐœ์˜ ๋‚˜์ด์Šคํ•œ ์ ์—์„œ์˜ ํ•จ์ˆ˜๊ฐ’์„ ์‚ฌ์šฉํ•ด ์ ๋ถ„์„ ํ•ฉ๋‹ˆ๋‹ค.

\[\int_{-1}^{1} f(x) \, dx \approx f\left(- \frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)\]

์ด๋ฒˆ์—๋Š” ๋‘ ์ ์—์„œ์˜ ํ•จ์ˆ˜๊ฐ’์„ ์‚ฌ์šฉํ•ด ์ ๋ถ„์„ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋‘ ์ ์—์„œ์˜ ๊ฐ€์ค‘์น˜๋Š” ๋‘˜๋‹ค $w = 1$๋กœ ๋™์ผ ํ•ฉ๋‹ˆ๋‹ค.

๋‹ค์‹œ $f(x) = x^2$์˜ ์˜ˆ์ œ๋ฅผ ์‚ดํŽด๋ด…์‹œ๋‹ค.

\[\int_{-1}^{1} x^2 \, dx \approx \frac{1}{3} + \frac{1}{3} = \frac{2}{3}\]

์™€์šฐ! ์‹ ๊ธฐํ•˜๊ฒŒ๋„ ์‹ค์ œ ์ ๋ถ„๊ฐ’๊ณผ ์ •ํ™•ํžˆ ์ผ์น˜ ํ•ฉ๋‹ˆ๋‹ค!! ์ด๊ฒƒ์€ $f(x) = x^3$์—์„œ๋„ ๋™์ผํ•˜๊ฒŒ ์ •ํ™•ํ•œ ์ ๋ถ„๊ฐ’์„ ์ œ๊ณต ํ•ฉ๋‹ˆ๋‹ค.

\[\int_{-1}^{1} x^3 \, dx \approx - \frac{1}{3\sqrt{3}} + \frac{1}{3\sqrt{3}} = 0\]

๊ธฐํ•จ์ˆ˜ ์„ฑ์งˆ์— ์˜ํ•ด ์ ๋ถ„๊ฐ’์ด 0์ด ๋ฉ๋‹ˆ๋‹ค.

2์  ๊ตฌ์ ๋ฒ•์˜ deg of precision $k$๋Š” $k=3$๊ฐ€ ๋ฉ๋‹ˆ๋‹ค! 3์ฐจ ๋‹คํ•ญ ํ•จ์ˆ˜๊นŒ์ง€ ํ•ญ์ƒ ์ •ํ™•ํ•œ ์ ๋ถ„๊ฐ’์„ ์ œ๊ณต ํ•ฉ๋‹ˆ๋‹ค!

Three-point Gaussian Quadrature

์ด๋ฒˆ์—๋Š” 3๊ฐœ์˜ ๋‚˜์ด์Šคํ•œ ์ ์—์„œ์˜ ํ•จ์ˆ˜๊ฐ’์œผ๋กœ ์ ๋ถ„์„ ์ˆ˜ํ–‰ ํ•ฉ๋‹ˆ๋‹ค. ๊ณต์‹์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[\int_{-1}^{1} f(x) \, dx \approx \frac{5}{9} \cdot f\left( - \sqrt{\frac{3}{5}} \right) + \frac{8}{9} \cdot f(0) + \frac{5}{9} \cdot f\left( \sqrt{\frac{3}{5}} \right)\]

3์  ๊ตฌ์ ๋ฒ•์€ 5์ฐจ ๋‹คํ•ญ ํ•จ์ˆ˜๊นŒ์ง€ ํ•ญ์ƒ ์ •ํ™•ํ•œ ์ ๋ถ„๊ฐ’์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค!

์ด์ œ๋Š” ๊ณต์‹์ด ์ข€ ๋ณต์žกํ•ด์กŒ์Šต๋‹ˆ๋‹คโ€ฆ;; ๊ทธ๋ฆฌ๊ณ  $\sqrt{3/5}$๋ผ๋Š” ๊ฐ’์€ ๋˜ ์–ด๋””์„œ ๋‚˜์˜จ ๊ฑธ๊นŒ์š”??

Gaussian Quadrature

๊ฐ€์šฐ์‹œ์•ˆ ๊ตฌ์ ๋ฒ•์˜ ๊ณต์‹์€ ์•„๋ž˜์™€ ๊ฐ™์€ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

\[\int_{-1}^{1} f(x) \, dx \approx \sum_{i=1}^{n} w_i \cdot f(x_i)\]

์ด๋•Œ, ์‚ฌ์šฉํ•˜๋Š” $n$๊ฐœ ์ ์˜ ๊ฐฏ์ˆ˜๊ฐ€ ๋”ฐ๋ผ ์ˆ˜์น˜ ์ ๋ถ„์˜ ์ •ํ™•๋„๊ฐ€ ๊ฒฐ์ •๋˜๋Š”๋ฐ, $k = 2n-1$๋กœ ๊ฒฐ์ • ๋ฉ๋‹ˆ๋‹ค.

Derivation of two-point case

2์  ๊ตฌ์ ๋ฒ•์˜ ๊ณต์‹์„ ์œ ๋„ํ•ด๋ด…์‹œ๋‹ค!

์šฐ๋ฆฌ๋Š” ๊ตฌ์ ๋ฒ•์ด $k = 3$๊นŒ์ง€ ๋งŒ์กฑํ•˜๋Š” $x_1, x_2$ ๊ทธ๋ฆฌ๊ณ  $w_1, w_2$๋ฅผ ์ฐพ์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ์•„๋ž˜์˜ ์„ ํ˜• ๋ฐฉ์ •์‹์„ ํ’€์–ด์„œ ์ด๋ฅผ ๋งŒ์กฑํ•˜๋Š” $x_1, x_2, w_1, w_2$๋ฅผ ์ฐพ๋Š” ๋ฌธ์ œ์™€ ๋™์ผํ•ฉ๋‹ˆ๋‹ค.

\[\begin{aligned} \int_{-1}^{1} x^0 \, dx &= \sum_{i=1}^2 w_i (x_i)^0 \\ \int_{-1}^{1} x^1 \, dx &= \sum_{i=1}^2 w_i (x_i)^1 \\ \int_{-1}^{1} x^2 \, dx &= \sum_{i=1}^2 w_i (x_i)^2 \\ \int_{-1}^{1} x^3 \, dx &= \sum_{i=1}^2 w_i (x_i)^3 \end{aligned}\]

์—ฐ๋ฆฝ ๋ฐฉ์ •์‹์˜ ์ขŒ๋ณ€์„ ๋จผ์ € ์ •๋ฆฌํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

\[\begin{aligned} 2 &= \sum_{i=1}^2 w_i (x_i)^0 \\ 0 &= \sum_{i=1}^2 w_i (x_i)^1 \\ \frac{2}{3} &= \sum_{i=1}^2 w_i (x_i)^2 \\ 0 &= \sum_{i=1}^2 w_i (x_i)^3 \end{aligned}\]

๊ทธ๋ฆฌ๊ณ  ์šฐ๋ณ€์„ ์ •๋ฆฌํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. $n=2$ ๋ฐ–์— ์•ˆ ๋˜๊ธฐ ๋•Œ๋ฌธ์— ๊ธ‰์ˆ˜๋ฅผ ํ’€์–ด๋‚ด๋Š”๊ฒŒ ๋” ๋ณด๊ธฐ ์ข‹์Šต๋‹ˆ๋‹ค.

\[\begin{aligned} 2 &= w_1 + w_2 \\ 0 &= w_1 x_1 + w_2 x_2 \\ \frac{2}{3} &= w_1 x_1^2 + w_2 x_2^2 \\ 0 &= w_1 x_1^3 + w_2 x_2^3 \end{aligned}\]

๊ทธ๋ฆฌ๊ณ  ์ด ์„ ํ˜• ๋ฐฉ์ •์‹์„ ํ’€์–ด๋‚ด๋ฉด ๋ฉ๋‹ˆ๋‹ค. ๊ฐ ๊ณผ์ •์„ ๋”ฐ๋ผ๊ฐ€๋ฉดโ€ฆ

๊ฐ€์žฅ ๋จผ์ € 1๋ฒˆ์งธ ์‹์— ์˜ํ•ด $w_2 = 2 - w_1$๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๊ฒƒ์„ 2๋ฒˆ์งธ ์‹์— ๋Œ€์ž…ํ•˜๋ฉด,

\[0 = w_1 x_1 + (2 - w_1) x_2\]

๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ๋‹ค์‹œ $x_2$์— ๋Œ€ํ•ด ์ •๋ฆฌํ•ฉ๋‹ˆ๋‹ค.

\[x_2 = - \frac{w_1 x_1}{2 - w_1}\]

์ด์ œ ์ด๊ฒƒ์„ 3๋ฒˆ์งธ ์‹์— ๋Œ€์ž…ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฉด, 3๋ฒˆ์งธ ์‹์€ $w_1$๊ณผ $x_1$๋กœ๋งŒ ์ด๋ค„์ง„ ์‹์ด ๋ฉ๋‹ˆ๋‹ค.

\[\begin{aligned} \frac{2}{3} &= w_1 x_1^2 + (2 - w_1) \left(- \frac{w_1 x_1}{2 - w_1}\right)^2 \\ \frac{2}{3} &= w_1 x_1^2 + \frac{w_1^2 x_1^2}{(2 - w_1)} \\ 2 (2 - w_1) &= 3 (2-w_1) w_1x_1^2 + 3 w_1^2 x_1^2 \\ 4 - 2 w_1 &= (6 - 3 w_1) (w_1 x_1^2) + 3 w_1^2 x_1^2 \\ 4 - 2 w_1 &= 6 w_1 x_1^2 \cancel{- 3 w_1^2 x_1^2 + 3 w_1^2 x_1^2} \end{aligned}\]

์ด ์‹์„ ์ •๋ฆฌํ•˜๋ฉด, $w_1 = \cdots $๊ฐ€ ๋  ๊ฒƒ์ด๊ณ , ์ด๋ฅผ ๋งˆ์ง€๋ง‰ 4๋ฒˆ์งธ ์‹์— ๋Œ€์ž…ํ•˜๋ฉด, $w_1, w_2, x_1, x_2$์˜ ๋ชจ๋“  ๊ฐ’์„ ์ •ํ™•ํžˆ ์–ป์–ด๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค!

2์  ๊ตฌ์ ๋ฒ•์—์„œ์กฐ์ฐจ 4๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ์•„์•ผ ํ–ˆ๋Š”๋ฐ, 3์ , 4์ , $n$์  ๊ตฌ์ ๋ฒ•์ด ๋˜๋ฉด ์ฐพ์•„์•ผ ํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ $2n$๊ฐœ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์†์œผ๋กœ ์ง์ ‘ ์ด๊ฒƒ์„ ์ฐพ๊ธฐ๋Š” ๋งค์šฐ ์–ด๋ ค์›Œ์ง‘๋‹ˆ๋‹คโ€ฆ

๊ทธ๋ž˜์„œ ๋“ฑ์žฅํ•˜๋Š” ๊ฒƒ์ด ๋ฅด์žฅ๋“œ๋ฅด ๋‹คํ•ญ์‹ $P_n(x)$์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ• ์ž…๋‹ˆ๋‹ค! ์ƒˆ๋กœ์šด ๋…€์„์ด ๋‚˜์˜ค๋Š”๊ฑฐ๋ผ ์ข€ ๋‹นํ™ฉ์Šค๋Ÿฝ๊ธด ํ•˜์ง€๋งŒ ๊ฐ€์šฐ์‹œ์•ˆ ๊ตฌ์ ๋ฒ•์„ ์ •๋ง ์‰ฝ๊ฒŒ ๋งŒ๋“ค์–ด์ค€๋‹ค๊ณ  ํ•˜๋‹ˆ!! ํ•œ๋ฒˆ ๋งŒ๋‚˜๋ด…์‹œ๋‹ค!

Derivation with Legendre Polynomial $P_n(x)$

๋ฅด์žฅ๋“œ๋ฅด ๋‹คํ•ญ์‹์ด ๋ญ”์ง€๋Š” ์ผ๋‹จ ์ œ์ณ๋‘๊ณ , ๋ฅด์žฅ๋“œ๋ฅด ๋‹คํ•ญ์‹์„ ์‚ฌ์šฉํ•˜๋ฉด ์–ด๋–ป๊ฒŒ ๊ฐ€์šฐ์‹œ์•ˆ ๊ตฌ์ ๋ฒ•์„ ๊ตฌํ•˜๋Š”๊ฒŒ ์‰ฌ์›Œ์ง€๋Š”์ง€ ๋จผ์ € ์‚ดํŽด๋ด…์‹œ๋‹ค.

  • ๋…ธ๋“œ $x_i$
    • ๊ตฌ๊ฐ„ $[-1, 1]$์—์„œ ๋ฅด์žฅ๋“œ๋ฅด ๋‹คํ•ญ์‹ $P_n(x)$์˜ ๊ทผ(zero)๋ฅผ ์ฐพ๋Š”๋‹ค.
  • ๊ฐ€์ค‘์น˜ $w_i$
    • ํ•ด๋‹น ๋…ธ๋“œ์—์„œ ๋‹ค์Œ ๊ณต์‹์„ ์ด์šฉํ•ด ๊ณ„์‚ฐํ•œ๋‹ค.
    • $w_i = \dfrac{2}{(1-x_i^2)[Pโ€™_n(x_i)]^2}$

๊ณผ์ •๋งŒ ๋ดค์„ ๋ฟ์ธ๋ฐ๋„ ์ด ๋ฐฉ์‹์ด ๋” ์‰ฌ์›Œ๋ณด์ž…๋‹ˆ๋‹ค! ๋ฅด์žฅ๋“œ๋ฅด ๋‹คํ•ญ์‹์ด ๊ทผ์„ ๊ฐ–๋Š” ์ง€์ ์„ ์ฐพ๊ณ , ๊ทธ ์  ์œ„์—์„œ ๊ณต์‹์„ ์ด์šฉํ•ด ๊ฐ€์ค‘์น˜ $w_i$๋ฅผ ์œ ๋„ ํ•ฉ๋‹ˆ๋‹ค!

Legendre Polynomial

์ด์ œ๋Š” ๋ฅด์žฅ๋“œ๋ฅด ๋‹คํ•ญ์‹์ด ๋ญ”์ง€ ์‚ดํŽด๋ด…์‹œ๋‹ค! ๋ฅด์žฅ๋“œ๋ฅด ๋‹คํ•ญ์‹์€ ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜๋ฉ๋‹ˆ๋‹ค.

\[\begin{aligned} P_0(x) &= 1 \\ P_1(x) &= x \\ P_2(x) &= \frac{1}{2} (3x^2 - 1) \\ P_3(x) &= \frac{1}{2} (5x^3 - 3x) \\ P_4(x) &= \frac{1}{8}(35x^4 - 30x^2 + 3) \end{aligned}\]

๋‹คํ•ญ์‹์„ ๋ด๋„ ์–ด๋–ค ๊ทœ์น™์„ฑ์ด ๋ณด์ด์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค ๐Ÿค”

์ผ๋‹จ ๋ฐ”๋กœ ๋ณด์ด๋Š” ํŒจํ„ด์€ ๋ชจ๋“  $P_n(x)$ ๋‹คํ•ญ์‹์€ $n$์ฐจ ๋‹คํ•ญ์‹ ์ž…๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ง์ˆ˜ ํ•จ์ˆ˜๋Š” ์งํ•จ์ˆ˜๋กœ๋งŒ ์ด๋ค„์ง€๊ณ , ํ™€์ˆ˜ ํ•จ์ˆ˜๋Š” ํ™€ํ•จ์ˆ˜๋กœ๋งŒ ์ด๋ค„์ง‘๋‹ˆ๋‹ค.

Rodriguesโ€™ Formula

๋ฅด์žฅ๋“œ๋ฅด ๋‹คํ•ญ์‹์„ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•๋„ 2๊ฐ€์ง€๊ฐ€ ์žˆ๋Š”๋ฐ, ์ˆ˜์—… ๋•Œ๋Š” โ€œRodriguesโ€™ formulaโ€์˜ ๊ณต์‹ ๋ฒ„์ „์„ ์†Œ๊ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค.

\[P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2-1)^n\right]\]

๊ณต์‹์ด๋ผ๊ณ ๋Š” ํ•˜์ง€๋งŒ ๋‹ค๊ฐ€๊ฐ€๊ธฐ ์‰ฌ์šด ๋…€์„์€ ์•„๋‹™๋‹ˆ๋‹ค;; ๊ณต์‹์— ๋”ฐ๋ผ ๋‹คํ•ญ์‹์„ ๋ช‡๊ฐœ ์œ ๋„ํ•ด๋ด…์‹œ๋‹ค.

\[\begin{aligned} P_0(x) &= \frac{1}{2^0 \cdot 0!} \frac{d^0}{dx^0} \left[ (x^2-1)^0 \right] \\ &= 1 \cdot \frac{d^0}{dx^0} \left[ 1 \right] \\ &= 1 \end{aligned}\] \[\begin{aligned} P_1(x) &= \frac{1}{2^1 \cdot 1!} \frac{d}{dx} \left[(x^2-1)\right] \\ &= \frac{1}{2} \cdot 2x \\ &= x \end{aligned}\] \[\begin{aligned} P_2(x) &= \frac{1}{2^2 \cdot 2!} \frac{d^2}{dx^2} \left[(x^2-1)^2\right] \\ &= \frac{1}{8} \cdot \frac{d}{dx} \left[ 2 \cdot 2x (x^2 - 1)\right] \\ &= \frac{1}{8} \cdot 4 \cdot \frac{d}{dx} \left[ x (x^2 - 1)\right] \\ &= \frac{1}{2} \cdot \left[ (x^2 - 1) + 2x^2 \right] \\ &= \frac{1}{2} \left(3x^2 - 1\right) \end{aligned}\]

์‹ ๊ธฐํ•˜๊ฒŒ๋„ ์•ž์—์„œ ์ ์€ ๋ฅด์žฅ๋“œ๋ฅด ๋‹คํ•ญ์‹๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณต ํ•ฉ๋‹ˆ๋‹ค!

Recurrence Relation

๋ฅด์žฅ๋“œ๋ฅด ๋‹คํ•ญ์‹์€ ์ ํ™”์‹์œผ๋กœ๋„ ๊ตฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค! ์ ํ™”์‹์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

\[(n+1) P_{n+1}(x) = (2n+1) x P_n(x) - nP_{n-1}(x)\]

๊ทธ๋ฆฌ๊ณ  ์ ํ™”์‹์˜ ์ดˆ๊ธฐ๊ฐ’์€ $P_0(x) = 1$, $P_1(x) = x$์„ ์‚ฌ์šฉ ํ•ฉ๋‹ˆ๋‹ค.

์ ํ™”์‹์œผ๋กœ $P_2(x)$๋ฅผ ์œ ๋„ํ•ด๋ด…์‹œ๋‹ค.

\[\begin{aligned} 2 P_2(x) &= 3 \cdot x \cdot x - 1 \cdot 1 \\ P_2(x) &= \frac{1}{2} \left(3x^2 - 1\right) \end{aligned}\]